ASA NASA SP-8001 R<:
SPACE VEHICLE

H
DESIGN CRITERIA
(STRUCTURES)

BUFFETING DURING
ATMOSPHERIC ASCENT

MAY 1964
Revised
NOVEMBER 1970

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION




FOREWORD

NASA experience has indicated a need for uniform criteria for the design of space
vehicles. Accordingly, criteria are being developed in the following areas of technology:

Environment
Structures

Guidance and Control
Chemical Propulsion

Individual components of this work will be issued as separate monographs as soon as
they are completed. A list of all previously issued monographs in this series can be
found at the end of this document.

These monographs are to be regarded as guides to design and not as NASA
requirements, except as may be specified in formal project specifications. It is
expected, however, that the criteria sections of these documents, revised as experience
may indicate to be desirable, eventually will become uniform design requirements for
NASA space vehicles.

This monograph is a revision of a monograph issued in May 1964. The original and
revisions were prepared by H. A.Cole, Jr., and A. L. Erickson of Ames Research
Center, and by A. G. Rainey of Langley Research Center. The monograph was revised
under the cognizance of Langley Research Center as the lead center for structures
criteria. The revisions consist primarily in the addition of more recent references which
indicate that the buffeting-category boundaries presented are still valid, although less
conservative than originally anticipated.

November 1970
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BUFFETING DURING
ATMOSPHERIC ASCENT

1. INTRODUCTION

Buffeting is a repeated loading of a structure by an unsteady aerodynamic flow. The
occurrence of buffeting during atmospheric ascent depends primarily on the shape of
the vehicle; its severity depends on dynamic pressure, Mach number, and angle of
attack, as well as shape. Unfavorable shape factors include protuberances, swellings,
and abrupt changes in vehicle profile, especially at or near the forward end of the
vehicle.

Buffeting may cause overall vehicle-bending oscillations, shell-breathing oscillations,
and vibration of structural panels. Equipment and sensors located near structural
panels subjected to buffeting may fail or be otherwise adversely affected by the
associated vibration.

When possible, the vehicle should be designed to minimize buffeting through the use of
favorable configurations. If this is not possible, the undesirable effects (i.e., oscillating
pressures, aeroelastic responses, and possible impairment or degradation of human
functions and equipment operation) must be determined and provided for in the
structural design.

Related problems, such as vibration, acoustics, and flutter, will be considered in detail
in other monographs.

2. STATE OF THE ART

Buffeting is a problem that has plagued aircraft designers as far back as 1930 and,
hence, has been investigated extensively. A review of buffeting work on aircraft is given
in reference 1. Generally, buffeting is associated with separation of the boundary layer
and transition to turbulent flow. Considerable progress has been made in recent years
to advance boundary-layer and turbulent-flow theory, and an excellent review is given
by von Karman in his 1959 Guggenheim Memorial Lecture {ref. 2). Howe\}er, a
satisfactory solution of the buffeting phenomenon by analytical means has not been
found and, at present, experimental results must be used for prediction of buffeting
ioads.



Farly work on turbulent flow by Taylor, von Karman, and Drvden was developed
atong the hapes of statndical anadvsisg o review of this work s given in reference 3,
Particular apphication of statistical concepts to the bufteting problem is introduced by
Licpmann in reference 4, in which he considers parallel research from communications
enginecring by Rice trefs 51 and Wiener (refs. 6 and 7y Further applications of

statistical analysis are contained in references 8 to 10, These methods imply that the

1
structural svatem s a hnear system and that the input force is a sample function of an
crgodic random process. Generally, the problem can he separated into two parts: (1) a
defmiton of the mput forces as a stochastic process and € 23 a definition of the svstem
frequency response. When these gquantities are defined. the output quantities can he

obtained in statistical terms,

Wind-tunnel memsurements of buffeting-input forces are reported tor a wide range of
space-vehicle nose shapes inoreferences 11 to 180 the buffeting forces reported in
reference U were applied in the calculation of buffeting loads on the Atdas-Able V
givenn m reference Y0 Another example s contuined v reference 135 for the
Mercury-Atdus vehucle, Several assumptions were made in these unalyses which indicate
a lack of information in the present state of the art, For example. it was necessary to
assume that all the buffeting pressures acted together hecause spatial correlation of
pressures was nol well known In addition, scaling of the spectra was assumed to be in
accordanve with reduced frequency, Although there i some doubt regarding the
scabing lows because separation offects can vary greatly, depending on the condition of
the boundary laver fref. 204, there s some evidence trefs, 1o and 21 that the aswsumed

saalimg relationshnps are valnl,

The already complex problem of butfeting was further complivated by the discovery of
unstable acrodvaumic offects of “hammerhead” noses trefl 221 These results indicated
that buftetng respomse could be greatly amphitied by destabilizing serodyvnamic forces,
and buttcting analyses should theretore include aerodvnamic, as well as structural,
damping. Further information on serodynamic damping is given in references 23 1o 26,
The umstable damping of hammerhead unch velucles has abo ratsed the question of
the stabihty of Bluntnose flared vehicles which are similur o the entry-body
contigurations found to be unstable i references 27 und 28 Anabvss of serodvnumic
dumping tor this type of vehwle s given in references 29 1o 31 In this method,
mduced loads caused by sepurated tlow are determined from statie aerodvnamic duta,
and the distunce from the separation point o the induced loading b used as the
charsctersiic length in o guasisteadystate analysix, This method shows promise for

vises where the charactenistic fength w clearby defined,

One ot the major problems that arpe 1 the prediviion of butfering is the large number
of geomelric configurations that are possible with various sizes of pavioads and rocket

stuges. Becawse of this, buffeting data are rarely available for any particular vehicke in
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the preliminary design stage. To get around this problem, a method has been developed
by Albert L. Erickson of the Ames Research Center which correlates buffeting loads
with the minimum pressure and adverse pressure gradients calculated from
slender-body theory. With this method, any geometric shape can be classified and
judged to fall within several categories of buffeting flow that have been determined by
previous experiments. The slender-body theory, unfortunately, gives unrealistic
pressure gradients for sharp steps, and the gradients have to be modified arbitrarily on
the basis of previous experience. Since the theory is used to normalize experiment by
theory for the purpose of making relative comparisons between configurations, the
same simple theory and calculation procedure should always be used in order to
produce consistent and valid comparisons. At present, this method has been used for
qualitative studies of a number of configurations with various nose shapes, boattail
" angles, flare angles, stage lengths, and stage-diameter ratios from which the numbers
given in the design criteria have been obtained.

In summary, no general analytical method has been found to solve the buffeting
problem. Consequently, prediction of buffeting rests entirely on wind-tunnel
information from scale models. The application of these data is somewhat uncertain
because scaling effects of boundary-layer and separation phenomena have not been
firmly established. In the present state of the art, buffeting loads are predicted by
statistical methods, with the assumption that the structure is a constant-coefficient
linear oscillator subjected to random forces that are sample functions of an ergodic
random process. In reality, buffeting of the space vehicle is a physical system of a
time-varying nonlinear oscillator subjected to a statistically nonstationary random
input. Solution of this problem is beyond the state of the art and, hence, the design
procedures which are outlined in this monograph are intended to be conservative.

3. CRITERIA

3.1 Examination of Space Vehicles

Space vehicles shall be examined for the existence, type, and intensity of buffeting.
Criteria are presented according to geometric shape parameters and
pressure-distribution parameters of the vehicle.

3.2 Clean Bodies of Revolution

Configurations which can be defined in terms of the pressure and shape parameters
specified in Sections 3.2.1, 3.2.2, and 3.2.3 are considered to be free of buffeting



which would cause overall vehicle-bending or shell-breathing osaliutions, Buffenung

may oxintin highly locabized areas in the region of fluctuating shock waves.

3.21 Pressure Parameters

Configurations with nose shapes that hove minmimum theoretical mcompressible-flow

static-prossure cocitcients and maximum adverse pressure grisdionts in the following

ranges are considered buffet free as defined in the first puragraph of Section
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3.2.2 Theoretical PressureDistribution Equation and
Parameter Definition
The theoretical pressure-distribution equation to be wsed 15
: Buse '
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where
P = slalic prossure
4 = dynumic prossure
X = tongitudinal coordinate of point where pressure is to be calvulated
£ = fongitudinal coordinate of point on body
¥ = body radius at £
r = drdt
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Pressure parameters are defined inn figure 1, where B s maximum diameter of nose

seclion.
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3.2.3 Shape Parameters

Configurations not conforming to the criteria of Section 3.2.1 because of nose blunting
and presence of small steps, but meeting the criteria given in figure 2 are considered
buffet free as defined in the first paragraph of Section 3.2.
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3.3 Buffet-Prone Bodies of Revolution

Configurations that have a separated-wake type of flow or that are liable to
destabilizing aerodynamic-damping force require evaluation of buffeting loads and
other undesirable buffeting effects. Such configurations are defined in the following
paragraphs in terms of pressure and shape parameters.



3.3.1 Separated-Stable Configurations

Separated-stable configurations are defined in terms of pressure and shape parameters

as fodlows tsee also See, 3201

d ap
4

Jd i
B /max

The above criterion i restrivied to configurations having node location, diameter, and
fength parameters o detined in figure 3, and apphies only where o sngle. strmght-line
bouatiad angle 1s used.
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Figure 3.

The restrictions shown g figure 3 are made because of the Bmited amount of avalable
butteting Juta, and are not infended To imply that configurations outside the
paramelers cannol have separatedsstable flow, However, until experumental rosults are
obiained which confirm the pressure grudient criteriz outside the Hmits shown,
configurations  not  conforming  to figure 3 shall be treated  as possible

sepuarated-unstable contipurations.

Canfigurations having cavities te.g, o compariment with lurge uncovered blast vents

which might otherwise meet the criteria of Section 3.2,

3.3.2 Separated-Unstable Configurations

Contigurations having adverse pressure gradients tsee Sec. 3.2 21n the range below are

liable tr destabilizing aerodynamic-damping foroes,
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Examples of some undesirable configurations of this class are shown in figure 4.
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3.4 Other Buffet-Prone Bodies

Configurations which are not bodies of revolution, such as winged configurations, may
be liable to destabilizing aerodynamic-damping forces, as well as separated flow, and
require evaluation of buffeting loads and other undesirable buffeting effects.

4. RECOMMENDED PRACTICES

4. Category of Configuration

Practices to be followed in designing space-vehicle systems for buffeting will depend on
the category in which the configuration falls, as indicated in Section 3.

4.2 Clean Bodies of Revolution

With well-designed nose shapes, a normal shock will appear with some thickening of
the boundary layer downstream, but separated flow will not occur. However, as
indicated in references 11 to 13, panels near the shoulders and steps of these shapes
will be subjected to a highly localized pressure fluctuation which should be considered
in the design of panels and nearby equipment. Data contained in the references cited
should permit an adequate determination of the fluctuating pressures, providing these
data are used in conjunction with a conservative estimate of the cross-power spectral
density of the fluctuating pressure field.



4.3 Buffet-Prone Bodies of Revolution

4 .31 Separated-Stable Configurations

Separated-stable configurations are subject to buftet pressures of such magnitude and
extent that both the local-pane response and the modal response of the vehicle should
he comitdered in the design. For shapes within this category that are similar to the
shapes investigated in references 11 to 36, the pressure data available in these
referenves  are comsidered 1o be adequate Yor preliminary design. For other
confipurations which differ significantly from those considered in the references, a
wind-tunnel determination of fluctuating pressures on rigid modeb is recommended.
Practices and procedures for these two cases are set forth in the remainder of
Section 4.3 1.

Buttet Data Available A preliminary estimate of the bending moments caused by
buffeting can he muade by use of appropriate input data from references 11 to 16 in an
analysis of the type discussed in references 15 and 19, This type of analysis will
generally lead to conservative values of bending loads because of the assumption that
all buffet forces act in phase. If the bending moments obtained by this type of analysis
do not impose a significant design penalty | it can be considered that the modal-bending
aspects of the buffet problem huve been satisfied.

It these conservative caleulated bending moments are high enough 1o impose a
significant design penalty, o wind-tunnel program s recommended to establish the
actual design buffet-bending moments. A satisfactory rigid-model technique using

summation of pressure cells i deseribed in reference 220

For configurations on which the crosssspectral densities of fluctuating pressures are
known, 4 more exact analysis of bending moments can be made (ref. 323 which is not
overly conservative. In these cases, further wind-tunnel tests are not necessary and the

resulting vilues of bending moments should be satistactory for design purposes.

Bugter Dare Nor Available For configurations which differ from those for which
wind-tunnel data exist. dyvnamic pressure-cell tests on scale models are recommended.
The technology for conducting these tosts is well established, as indicated in references
T to 16, Scaling parameters that should be satisfied are Mach number. Revnolds
number, and reduced frequency. The Mach number can be satistied, but generally the
Reyvnolds number cannot be matched in existing facilities. If the Revnolds number is
not high enough to ensure a turbulent boundary layer on the model at the separation
point. it is recommended that artificial roughness be used to trip the boundary laver.

For a particular vehicle, reduced frequency is satisfied as follows:
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fm = fps — \7&&' @
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where
{f = frequency
D =  characteristic dimension
V = velocity
M = model
FS = fullscale

For example, the model frequency of a 1/6-scale model tested in air which corresponds
to a full-scale frequency of 200 Hz is

£ =200x—?-x—i-= 1200 Hz

The frequency environment of importance to structural modes and equipment
generally does not exceed 2000 Hz on a full-scale vehicle. However, this figure imposes
severe frequency requirements on pressure cells for small-scale models, and for this
reason the model should be made as large as possible. The actual frequency
requirements will depend on evaluation of the possible response of the various
structural modes, structural panels, and equipment to buffeting forces.

After the buffet-pressure data have been obtained, the design evaluation should
proceed as described earlier in this section for configurations with buffet data available.

4 3.2 Separated-Unstable Configurations

For separated-unstable configurations, a dynamic-model wind-tunnel program is
recommended for the determination of aerodynamic aspects of the system stability
and the model’s bending loads. The preferred dynamic-model techniques are the
partial-mode technique described in reference 22 and the complete dynamic-model
technique described in references 23, 25, and 33. The partial-mode technique simulates
the modal response of the complete space-vehicle system by use of rigid partial models
supported on springs in a manner that permits pitching about the nodal points at the
correct scaled frequency. The complete dynamic-model technique employs a complete



aeroclastically scaled model supported on soft springs in a4 manner that permits
response in the free-free bending modes. Both technigques employ excitation of the
model for the determination of acrodynamic damping derivatives. The measured

dynamic response of the models is used to predict the full-scale bending moments.

4 .4 Other Buffet-Prone Bodies

For other butfet-prone body configurations. a dynamic-model wind-tunnel program as

deseribed i Section 4.3.7 i recommended.

4.5 Special Considerations

The flow on ~ome parts of buffet-prone shapes will result in pressure fluctuations that
have relatively high energies at high frequencies, These high-mtensity pressures can lead
to structural tatigue and or cquipment malfunctions. For these conditions, special
emphisis should be placed on design features for minimizing structural damage and
cquipment maifunctions o recommended in reference 34 However, both these
problems are comsidered to be too complex for complete reliance on available
analytical procedures: 1t is therefore recommended  that  appropriate tests be

performed,

For munned vehicles, spectal emphasis should be placed on design features to avoid
those combinations of frequency and aceeleration known to have adverse effects on
man’s health or performance. Human tolerance criteria are reviewed in reference 35,

and additionad data are given in references 36 and 37,

1)
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Control Systems, February 1970

Assessmment and Control of Spacecraft Mugnetic
Frelds, September 1970

Fracture Control of Metallic Pressure Vessels,
May 1970

Landing Impact Attcnuation for  Non-
Surface-Planing Landers, April 1970

Structural Vibration Prediction, June 1970
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