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Preface

Internal fluid flows are subject not only to self-sustained oscillations of the
purely hydrodynamic type but also to the coupling of the instability with the
acoustic mode of the surrounding cavity. This situation is common to turbo-
machinery, since flow instabilities are confined within a flow path where the
acoustic wavelength is typically smaller than the dimensions of the cavity and flow
speeds are low enough to allow resonances. When acoustic coupling occurs, the
fluctuations can become so severe in amplitude that it may induce structural
failure of engine components. The potential for catastrophic failure makes

identifying flow-induced noise and vibration sources a priority.

In view of the complexity of these types of flows, this report was written
with the purpose of presenting many of the methods used to compute frequencies
for scli-sustained oscillations. The report also presents the engineering formulae
needed to calculate the acoustic resonant modes for ducts and cavities. Although
the report is not a replacement for more complex numerical or experimental
modeling techniques, it is intended to be used on general types of flow
configurations that are known to produce self-sustained oscillations. This report

provides a complete collection of these models under one cover.

This report is divided into two parts. Part I (Chapters 2 through 6} presents
many of the methods used to calculate acoustic resonances for internal flow paths
inside turbomachinery for the conditions when the acoustic wavelength is much
larger than the cavity dimensions (discrete resonator) and in which the wavelength
is comparable to or smaller than the main flow path dimensions (distributed
resonator). Part II (Chapters 7 through 11) shows how to compute the modes of
instability for fluid oscillators that are self-sustained. These tvpes of oscillations are
termed instabilityv-induced excitation (TE) and include jets, wakes, and mixing
lavers. By combining Parts T and II, modes of flow instability and acoustic
resonances can be calculated to determine the potential for coalescence between

discrete or distributed resonators and illctability—induced oscillators.

In addition to the report, FORTRAN 77 computer programs were developed
to perform the calculations described in the report which go beyond what is
reasonably expected from a hand-held calculator. To obtain copies of the programs,

contact Tom Nesman at (205) 544-1546 or E-mail Tom.Nesman@msfc.nasa.gov.
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Zy
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Zap

G,

D

Source region of pipe wall

Imaginary part of specific acoustic impedance

Vertical coordinate

Specific {or characteristic) acoustic impedance

Specific acoustic impedance at x=0

Specific acoustic impedance of a plane wave

Attenuation in dead zone
Tubc cross-sectional area
Complex amplitude of @(y)
Cross-sectional arca of cavity
Loss factor

Cross-sectional area of orifice
Cross-sectional area of pipe
Adiabatic bulk medulus

Bulk modulus for air bubble
Effective bulk medulus

Bulk morulus of liquid

Bulk modulus of shell

Bulk modulus for bubble swarm

Chord dimension of rectangular cascade system

Base pressure coefficient

Depth of simple axisymmetric cavity

Frequency constant
Diameter of vortex whistle
Diameter of jet

Diameter of pipe
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E Moedulus of elasticity of tube material Equation (2-9)
F Force Equation (2-5)
Fy Residual error terms Equation (6-11)
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G, Resonance paramcter, staggered tube array Equation (9-7)
I Section moment of inertia Equation (9-9)
I+ Acoustic intensity of plane wave propagating with flow Equation (5-6)
I Acoustic intensity of plane wave propagating against flow Equation (5-6)
Jy Cylindrical Bessel function Equation (4-31)
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L Length of straight pipe section Figure 3-3
L Downstream tube length Figure 10-1
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Lo Effective length Figure 2-1
14 Incident acoustic power level Equation {3-10)
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.y Transmitted acoustic power level Equation (3-10)
M Mach number of flow past cavity Table 1-2
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M, Mach number of flow at pipe exit Figure 5-4
N Number of cavitics per unit volume Equation (4-62)
P Pressure amplitude of standing wave Equation (6-10)
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R,

Amplitude of upstream wave

Amplitude of downstream wave

Base pressure, the pressure at the back of the plate

Amplitude of pressure in Helmholtz resonator
Amplitude of incident pressure wave

Modal amplitudes

Amplitude of reflected pressure wave
Amplitude of transmitted pressure wave
Pressure entering vortex whistle

Pressure exiting vortex whistle

Pressure in the undisturbed flow

Ambient pressure

Quality factor with acoustic and viscous losses

Acoustic quality factor
Volume velocity in Helmholtz resonator

Volume velocity of incident pressure wave

Volume velocity of reflected pressure wave

Volume vélocity of reflceted pressure wave
Dashpot resistance

Correlation function

Real part of complex impedance

Acoustic resistance

Reynolds number

Universal Reynolds number, based on d' and Us
Viscous surface resistance

Viscous resistance
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S, Tube layout parameter Figure 9-6
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T Temperature Equation (2-11)
Ty Elements of transfer matrix Equation (3-58)
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TLg)p Transmission loss of a straight pipe Equation (3-76)
U Free-stream flow speed Table 1-2
A Canvective velocity Equation (2-65c)
e Speed of fluid in cavity Table 1-2
Ugroup ~ Group velocity Equation (7-34)
U, Mean velocity at jet exit Table 8-1
U, Axial exit velocity from ring chamber Figure 10-1
U, Stream velocity Equation (9-2)
U, Jet velocity Eguation (8-3)
U, Free stream velocity Equation (8-3)
U.. Free-stream velocity Equation (9-2)
Volume Equation (2-1)
o Volume of cavity Figure 2-1
a Velocity component normal to interface Equation (7-6)
Vy Fluid anguliar velocity at swirl generator exit Equation (10-2)
w Acoustic power Equation (3-14)
W, Effectivee weight of the tube per unit length Equation (9-9)
W, Incident acoustic power Equation (3-9}
W Reference acoustic power Equation (3-11)
W, Transmitted acoustic power Equation (3-9)
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Imaginary part of complex impedance Equation (3-18)
Length of the potential core of a jet Table 8-2
X Distance from trailing edge to i'th vortex Equation {8-12)
Y,.Y; Distance separating shear layer Equation (8-9)
Zn Acoustic impedance of Helmholtz resonator Equation (2-46D)
Zn, Z  Acoustic impedance based on mass velocity Equation (3-5)
Zop, & Acoustic impedance of plane wave based on mass velocity Equation (3-6)
Z, Acoustic impedance of pipe Equation (2-46a)
Z, Acoustic impedance based on volume velocity Equation {3-3)
Zep Acoustic impedance of plane wave based on volume velocity Equation (3-4)
GREEK SYMBOLS
o Volume fraction Equation (4-50)
o4 Wave number Equation (7-9)
o Empirical constant Equation {11-27)
O, Classical attenuation in a pipe Equation (5-10b}
oy Attenuation per diameter of pipe Equation {4-27)
Ol ow Attenuation due to mean flow in a pipe Equation (5-20)
Cnm Radial wave number Equation (4-31)
oy Transmission coefficient Equation (3-9)
oty Coefficient of thermal diffustvity Equation (5-10)
Ot parts Attenuation due to turbulence in a pipe Equation (5-12)
B Complex angular frequency Equation (7-11)
i Eigenvalues of Helmholtz equation Equation (6-9h)
pi Complex part of complex angular frequency Equation {7-11)
Br Real part of complex angular frequency Equation (7-11)
Y Ratio of specific heats Equation (2-2)
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Axial wave number

Circulation

Fluid particle displacement

Damping constant

Length of entrained fluid within cavity
Length of entrained fluid outside cavity
Volume change in cavity

Displacement at open end of cavity
Strain

Increment in the x direction
Impedance with flow and no losses
Impedance with flow and losses
Increment in the y direction

Acoustic source displacement
Momentum thickness

Coincidence cone vertex angle
Wavelength

Wavelength for upstream traveling wave
Wavelength for downstream traveling wave
Absolute viscosity

Effective viscosity in a gas-filled tube
Kinematic viscosity

Density

Devsity of vapor

Density of liquid

Density at 0° C. and atmospheric pressure

KAV

Equation (4-31)
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@,
@,

WYy

y

,

Stress
Solidity ratio

Increment in time

Ratio of shear layer thickness to free-stream coordinate

Circumferential angle coordinate
Velocity potential

Complex amplitude of velocity potential
Complex amplitude of stream function
Imaginary part of d(y)

Real part of ®(y)

Friction factor for turbulent flow
Complex stream function

Angular frequency

Antiresonance frequency

Imaginary part of complex angular frequency
Natural frequency of bubble

Real part of complex angular frequency
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CHAPTER 1

IDENTIFICATION AND CLASSIFICATION OF
FLOW-INDUCED SOURCES INSIDE TURBOMACHINERY

Although the concept of flow-induced vibration may be well known, it is
often difficult to identify an excitation source inside turbomachinery when the need
arises. The difficulty in excitation source identification is due to the flow
complexities and the bewildering number of geometric features that are found inside
turbomachinery. To complicate matters further, engineers are often faced with
having to identify possible sources of excitation with limited information on the
details of the flow’s thermo- and hydro-dynamic environment.

This report has been prepared to alleviate some of the difficulties with
identifying potential sources of excitation inside turbomachinery. The report
presents in consistent notation and format, the formulae, charts, and tables that are
needed to determine the frequencies for self-sustained oscillations. The report is
organized according to the basic acoustic and flow configurations common to
turbomachinery. With each configuration, solutions to predict the preferred
frequency of oscillation are provided using the latest analytical and empirical

techniques found in the literature.

Section 1.1 introduces the basic source excitation mechanisms. Section 1.2
identifies the parts of the turbomachine which have a potential for excitation, and
Section 1.3 classifies the excitation sources and presents the structure and

organization for the rest of the report.

1.1 Basic Source Excitation Mechanisms

The first step in the process of identifying sources of excitation is to establish
a classification scheme so that the distinction between each of the model categories is
clearly stated. This shall be done using the source and classification scheme
originally devised by Naudascher and Rockwell. The scheme begins by
distinguishing three basic categories of mechanism.
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* Extraneously Induced Excitation (EIE)} — Generated by pulsations in the

flow or pressure that is not part of the vibrating system. The source of
excitation is independent of body movement or any instability that may
arise from vortex shedding. An example EIE might be a pump surge
that produces a strong pressure spike that in turn induces a force on

downstream engine components.

* Instability-Induced Excitation (IIE]) — Caused by an instability in the flow.

Often times the instability is brought on by the very same structure that
is endangered by the vibrations. These instabilities are simply a result of
an inflection point in the mean velocity profile. Many flow configura-
tions give rise to this type of flow. Some examples are jets, wakes, and
mixing layers. The feature common to all of these is the existence of a

shear layer.

* Movement-Induced Excitation (MIE] - An exciting force that is brought

about through the vibration of a body. When there is body movement
there is a phase relationship between the body displacement and the
fluid force produced from the body displacement. At certain values of
phase the flow will induce forces that will enhance the body movement,
causing the body to undergo self-sustained oscillation. Common

examples of MIE are couple mode flutter and galloping.

Any one of these three basic excitation mechanisms can be further
subdivided. For example, the IIEs have three basic subdivisions: these are: fluid-
dynamic, fluid-resonator, and body-resonator. Fluid-dynamic is the category of
oscillators that is dependent on the dynamics of the flow alone and is not coupled
to any other forcing mechanism. Fluid-resonator and body-resonator are two
other categories of oscillators where the fluid flow is modulated by either the
dynamics of the resonator or the movement of a body. In the case of the fluid-
resonator, a clearly identifiable acoustic mode or modes must be excited by the

action of a shear layer.

In practice there are many situations where these basic mechanisms may
appear in any combination inside turbomachinery. Such coalescence of excitation
mechanism is prone to highly amplified fluctuations and can lead to structural
failure. Being able to identify the basic mechanisms is one of the main tasks when

analyzing a vibration problem.



1.2 Source Identification

In this section, a search is made of all the possible excitation sources having
geometric configurations that lend themselves to handbook treatment. Such a
survey of source geometries defines the types, shapes, and range of flow condi-
tions for which analytical models are suitable, and precludes modeling all types of
excitation models and resonators that are not likely to occur inside turbo-
machinery. To accomplish this task, a list of vibration sources is first developed.
Next, the sources are organized into a logical framework so as to define the

appropriate models and establish the range of flow and acoustic conditions that

might be expected.

Consider as an example the High-Pressure Fuel Turbo-Pump (HPFTP). This
pump is one of four pumps on the Space Shuttle Main Engine (SSME). The space
shuttle orbiter vehicle propulsion system has a total of three main engines. An
engineering drawing of the HPFTP is shown in Figure 1-1. Included in the figure
are the thermodynamic properties at selected locations along the flow path. The
engines are presently throttled over a thrust range of 60 to 109 percent of the
design thrust. The values reported here are for conditions at the full power level

of 109 percent.

Liquid hydrogen from the low-pressure fuel pump enters the HPFTP at a
pressure of 240 psia. After passing through the first impeller stage the hydrogen
changes its phase to vapor and remains vapor through the remainder of the pump.
At the pump exit, the hydrogen gas is used to cool the main combustion chamber
nozzle, drive the turbine in the Low-Pressure Fuel Turbo-Pump (LPFTP), and is
mixed with oxygen in the preburners of the High-Pressure Fuel and Oxygen
Turbo-Pumps. The HPFTP preburner (not shown in the figure} produces hot

gases that drive the turbine, that in turn drives the pump.

Using Figure 1-1 a search is made of all possible excitation sources. In
Table 1-1 are listed some of the major cavities that are capable of maintaining a
standing acoustic wave. Listed in the table are the major engine components and
beside each component is the expected Mach number and frequency range. The
frequencies reported here are for the quarter wavelength mode. Note that in

most instances the Mach number is less than 0.2.
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Cavities Capable of Acoustic Standing Waves

Table 1-1

Chamber

s Engine Frequency Range
Basic Volumes Components Mach Number (One-Quarter Wave)
Circular Torus Pump Inlet and 0.02 10 0.22 C: 322 to 587 Hz
Exit Chambers
O Turbine Inlet and 0.03 to 0.22 C: 280 to 839 Hz
Exit Chambers
R ‘Engine
.g @ Centerline
b r
E
n
w Irregular Torus
z Ar> L Ar~ L « Impeller Balance <0.08 C: 330to 764 Hz
Cavity R: 2500 to 11,000 Hz
L L
s Lubrication and/or <0.21 C: 296 to 1286 Hz
A Cooling Cavity R: 2500 to 20,000 Hz
r
Ar
——— « Combustion 0.12 C: 790 Hz
engine centerline Chamber A 2770 He
Drilling
+ Lubrication Ports <0.25 A: 2700 to 6900 Hz
L * Bearing Slinger 0.12 A: 47,780 Hz
Drillings
N )
=
oy
E\
L]
" Duct « Impeller <0.35 A: 1500 to 2600 Hz
g
o / = Diffuser <0.1 A: 1700 to 3200 Hz
=z
L « Combustion <0.6 A: 2700 to 5000 Hz

C - Centrifugal Mode;

R - Radial Mode;

A - Axial Mode




Figure 1-2 further illustrates the range of resonance frequencies for
selected engine components. The vertical scale is a logarithmic frequency scale.
The components highlighted beside the scale indicate the first wavelength
resonance mode. The figure is divided into two parts: on the left side of the
figure are engine components that experience quarter wavelength modes in the
radial and axial directions: on the right side are the engine components that
experience circumferential standing waves. Longer wavelengths with frequencies
below 2000 Hz are the product of circumferential acoustic waves, while shorter

acoustic wavelengths are traceable to radial and axial resonance modes.

Continuing the search for excitation sources, Table 1-2 is another example
of how sources may be classified. Shown in Table 1-2 are the results of a survey
for cavities having dimensions smaller than the acoustic wavelengths. Four types
of cavities are identified. The first two cavities, denoted as the cavities without
branch pipes. are relatively simple configurations that can be modeled using a
handbook. For example, the first cavity resembles the classical Rossiter cavity and
might be analyzed using one of a number of models for flows over rectangular
cavities. The second cavity is a Helmholtz resonator. Engineering data and

formulae are readily available for these types of resonators.

The cavities appearing in the third and fourth rows are sufficiently more
complicated, the existence of the branch pipe makes it nearly impossible to
identify general handbook methodologies in the literature. In this situation, and
many more like it, handbook methodologies are unavailable and the only

appropriate measure is to use a computer modeling or a testing approach.

1.3 Source Classification

If one were to continue the search for sources through other parts of the
SSME, it would be quickly discovered that the engine spans a wide range of flow
conditions (liquid, vapor. and two-phase) and there are more possible flow situa-
tions than there are models. This statement is true in general for turbomachinery
and is not limited to a particular engine such as the SSME which was chosen for
this example exercise. Generally speaking, the following conclusions can be made
about turbomachinery: the Reynolds numbers are typically greater than 10,000,

the Mach number less than 0.2, and most frequencies of any significance are
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Table 1-2

Selected Cavities Inside Turbomachinery

)

L = Cavity length

o
1

Cavity depth

M = Mach number

. s _— Approximate
Basic Cavity Var.lat:on.of Significant Range of
Basic Cavity Parameters Dimensions
Simple Axisymmetric Bellows
Cavity W U = Free-stream L/D <1
AR velocity
u M<0.15
L Sliding Expansion Joint | I = Cavity length
9 D %_—D D = Cavity depth
&
" Turbine Blade Tip Seal | M = Mach number
g
£ L —=
Bt
2]
g
Non-Axisymmetric
= ym =
= | Helmholtz Resonator L,, = Neck length L, <0.2inch
B Combustion Chamber
B\ Resonator Lc = Cavlty depth Lc < 0.5 inch
> — -
3 A, = Orifice cross- A, /A, <0.1
sectional area
L
A_ = Cavity cross-
[ sectional area
Simple Axisymmetric L/D <1
Cavity With Lubrication and U = Free-stream
Exit Flowmg Fluid Cooling Port \relo()i[y M<0.2
U, = Cavity velocity U./U<15
: ( ( L = Cavity length
©
-
[ D = Cavity depth
=
5 M = Mach number
L]
m
2 | simple Axi tri
s imple Axisymmetric - .
& Cavity With U = F‘;ﬁg stream L/D <0.5
B s . city
e Entramed' Flowing Lubrication and M < 0.4
5 Fluid Cooling Port U, = Cavity velocity
© U /U <0.1




below 5000 Hz. Furthermore, most sources of vibration concern in turbo-
machinery will be traceable to 1IEs of the fluid-dynamic and fluid-resonator type.
Based on this premise, all the models appearing in the handbook assume the basic

mechanism as an Instability-Induced Excitation.

Also, given that the flows are internal, it is highly possible that an IIE may
become coupled with an acoustic wave. To deal with this issue, the first part of
the handbook (Chapters 2 through 6) presents a number of methods used to

calculate acoustic resonances inside internal flow paths.

The second portion of the handbook (Chapters 7 through 11) reviews
models that pertain to IIE. Included in the handbook are frequency prediction
formulae for jets, wakes, and mixing layers. Also discussed at great length are
aspects dealing with leading edge interactions. The models are organized
according to the basic categories of shear layer flows and those having leading

edge interactions.

Shown in Tables 1-3 and 1-4 are the acoustic and flow models considered
in this handbook. The models appearing in these chapters were selected based
upon results of the previous survey. In Table 1-3, the table is divided into two
parts: discrete resonators -~ having a cavity small in terms of the acoustic
wavelength, and distributed resonators - having cavity length measuring several
acoustic wavelengths and a transverse dimension typically small in terms of the
acoustic wavelength. In Table 1-4, the top row shows the basic flow configura-

tions: below each configuration is shown the basic model acting with an acoustic

resonator. These two tables are keyed to chapters in the handbook.



Table 1-3

Acouslic Resonator Models
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A>>A L2
A s>V /3
CHAPTER 2
g f\/\ Mean
8 \U Flow
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PART 1

ACOUSTIC RESONATOR MODELING



CHAPTER 2
CAVITY RESONATORS

by Miguel C. Junger
Cambridge Acoustical Associates

The basic forms of cavity resonators are (a) resonators with cavities small
in terms of acoustic wavelengths; (b} elongated cavities, e.g.. pipes, which display
a length measuring several acoustic wavelengths and transverse dimensions
typically small in terms of acoustic wavelengths; and (c) fluid-filled spaces whose
three dimensions measure several wavelengths. The mechanical analog of (a) is
the simple mass—spring oscillator. The mechanical analog of (b) is a waveguide,
viz, a column measuring several compressional wavelengths. The mechanical

analog of (c) is a multi-modal, three-dimensional structure.

Systems of type {c). which are typically dealt with by means of statistical
techniques, viz, room acoustics, are not relevant to turbomachine acoustics.
In covering type (a) and (b) systems, we shall rely as much as possible on the

familiar field of structural vibration.

Sections 2.1 and 2.2 introduces the basic mathematical models. Sec-
tion 2.3 considers the situation when the resonator is filled with a liquid and the
boundaries of the resonator are no longer rigid. Section 2.4 describes the
resonator characteristics when a damping material is inserted into the orifice.
Section 2.5 considers the Helmholtz resonator as a side branch. Sections 2.6
and 2.7 describe the effects of a high-incident pressure and turbulent flows inci-

dent on the mouth of the resonator.

2.1 The Helmholtz Resonator Reactance and Natural Frequency

2.1.1 The Mechanical-Acoustical Analog

A Helmholtz resonator's cavity is the equivalent of the spring of a simple
oscillator. Figure 2-1 presents a sketch of a Helmholtz-type cavity and its spring-
mass equivalent. The resonator's spring constant, K. is determined by the

compliance of the fluid-filled cavity and of its boundaries.



_LAL" HELMHOLTZ
---------- i $Lo RESONATOR
Lo A :
ALJ Lc
A, = Cavity Cross-Sectional Area
V. = Cavity Volume
A, = Orifice Cross-Sectional Area

MECHANICAL
OSCILLATOR

R[] K

Figure 2-1. The Helmholtz Resonator and Its Mechanical Analog,
the Simple Oscillator.




The equivalent of the oscillator mass, m, is the fluid mass in the resonator
neck plus the entrained fluid mass. The latter can be envisioned as the reactive
radiating loading on two virtual pistons forming the boundaries between the neck
and. respectively, the cavity and exterior space. Even if the neck length L, (see
Figure 2-1) is small, the sloshing of fluid through the orifice as the cavity is
alternatively compressed and decompressed entrains a mass of fluid correspond-
ing to a volume A, AL of fluid, where A, is the orifice cross-sectional area and
AL is the sum of the lengths of the entrained fluid outside the cavity, AL,, and the
entrained fluid within the cavity, AL,.

The analog of the dashpot resistance in the mechanical system, R, is the
sum of two components: the acoustic resistance R, associated with sound
radiation by the above-mentioned outward-facing virtual piston and the viscous
resistance R, embodying frictional losses. In airborne noise control applications,
the latter resistance is deliberately enhanced, e.g., by inserting a fiberglass plug in

the neck.

In this connection it is noted that Helmholtz resonators, which are now
used to absorb noise, particularly narrowband noise such as associated with
transformers, had been used traditionally in churches and theaters to render the
space more reverberant. The name of the 19th century physicist Helmholtz was
attached to the resonator not because he invented it but because he was the first
to analyze it. It is this reverberation-enhancing performance of the Helmholtz

resonator which is a potential problem in turbomachinery.

9.1.2 The Natural Frequency of the Helmholtz Resonator

The adiabatic bulk modulus (B) of a fluid — whether gas or liquid ~ relates
the volume strain (AV/V) of the adiabatically compressed fluid to the applied

pressure. The applied pressure can be expressed as

p = -BAV/V. (2-1)
For a gas, B is a function of the ambient pressure Pe,

B = yPw, (2-2)



where v is the ratio of the specific heats at, respectively, constant pressure and

constant volume. The ratio y, which is 1.40 for air under normal atmospheric

conditions, is a function of pressure and, to a lesser extent, of temperature.! For
100 atm and -79°C v, = 2.20. The bulk modulus for a liquid and a gas is

commonly expressed as
B = pc?, (2-3)

where p is density and c¢ sound speed. The bulk modulus of a liquid is far less

sensitive to pressure and temperature.
Applying Equation (2-2) to the resonator,

AV, = _ A
VT LA (2-4)

where A, and A, are, respectively, the cross-sectional areas of the orifice and of
the cavity, L. is the cavity depth, and & is the displacement of the virtual piston
defining the boundary between the orifice and exterior space. The force acting on

the piston is

F=Ap. (2-5)

Combining Equations (2-1), (2-4). and (2-5). one formmulates the effective stiffness

K = E
&
_ BA2
Le A
= BAI/V., (2-6)
where V. = L. A, is the cavity volume.

As already mentioned, the mass is the mass in the orifice neck (with
length L, ) augmented by the entrained mass of the virtual pistons forming the
interface between the neck and, respectively, the exterior space (length AL, ) and
the cavity (length AL;). For openings small in terms of the cavity's cross-sectional
area as well as of the wavelength squared. the entrained mass is that of a baffled

piston with lengths?



AL, = AL; = 0.850 (A,/m'?; A, <<A, M
= 0.48A,°. (2-7)
This asymptotic small-orifice result is insensitive to cross-section geometry. As

the orifice area increases, AL; decreases, as seen from a graph in Figure 2-2

computed by Ingard.® An approximate expression for these curves is
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AL, = 0.48A. [1-1.25(A/A)V7] . (2-8)

If the orifice opens outward through an extended boundary, the expression
for AL, in Equation (2-7) holds irrespective of A,/A. provided A, <<2?. Assuming

this to be the case, the effective resonator mass is
m = pAvLeﬁ'- [2'9)
where L. is the effective neck length shown in Figure 2-1 and is

Les

L, + AL, + AL,

L, + 0.48 A% [2-1.25 (A,/A)'7] . (2-10)

The density p of a gas is given by

_ po Pe
P = /273 (2-11)

where p, is the density at 0°C (273°K) and atmospheric pressure (1.23 x
103 g/cm? for air). P.. is the pressure of the gas in atmospheres, and T is the
temperature in degrees Kelvin.* The density of liquid is relatively insensitive to

pressure and temperature.®

Substituting the above results for stiffness and mass, the familiar expression

for the natural frequency of a simple oscillator is

fn = L (%)”2

2n
| ( B A, )”2
2n \p Ve Lew {2-12a)
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Figure 2-2. The Mass End Correction AL;. (Reproduced from Ingard.3)



Since B = p c2, the term (B/p}'/2 can be replaced with ¢ so that

- _C (An )”2

21 \Ve Loy (2-12Db)

Recalling that gasses have a density and bulk modulus which depend
strongly on pressure and temperature, one would expect the same to hold for the
sound velocity and consequently for f,. Referring to Equations (2-2) and (2-11),
one notes that the pressure cancels out, the sound velocity and hence f, are only

dependent on temperature

cT) = ¢, [T/273)'/*, (2-13)

where ¢, is the sound speed at 273°K (3.31 x 104 cm/s for air), and T is in

degrees Kelvin. Consequently,

LT = S (AaT/278)"
2n VeLeg

(2-14a)
Example Calculation

To illustrate the above result, consider an air-filled resonator with 1,/AL,
<« 1 and A,/A. << 1. In view of the latter inequality. Equation {(2-10) applies, and

Ly = 0.96A = A", (2-14b)
The natural frequency now becomes
f, = 3.31x10* ( 3#%/273)”2 '
2n Vc ) (2_15}

As an example, at a temperature of T =293°K, an orifice cross-sectional area A, =
10 cm? , and a cavity volume V. = 1000 cm3 , the natural frequency computed with
Equation (2-15} is 307 Hz.



2.2  Range of Validity of the Helmholtz Resonator Theory
The range of validity of the mathematical model of the cavity as a spring will

be explored as it is applied to waveguides. A waveguide of length L. terminated
by a rigid boundary displays a standing wave pressure field of the form

px) = Pcos [k {x-LJ)]J. (2-16)
where k = w/c = wavenumber and o = 2nf is the angular frequency. The corre-

sponding displacement 8. at the open end of the cavity {x = 0) is given by Euler's
equation specialized to harmonic motions whereby 8. = -®2? §, , or

6 = 1P

2
®° gx
P ¢ x=0

= Pk gin{kL)
p 0¥

= P
pctk

sin (k Lo ) 2-172)
-17a

Preserving a constant volume velocity. the corresponding particle displace-
ment in the resonator neck is

& = Ac 5.
Ao (2-17b)

The pressure is also continuous at x = 0. Consequently, the effective stiffness at
the neck—cavity interface is

K:Aup

&

= A2 P
A(‘ 6 -

= ﬁ—‘% pc?kceot{kL).

(2-18}
Noting that

(2-19)



The low-frequency limit of the stiffness, for which K212 /8«1, is

- Afpc
Ae Lo (2-20)
This inequality can now be used to formulate the restriction that resonator
dimensions must satisfy to make the elementary theory applicable. The wave-
number at the Helmholtz resonance is obtained from Equation (2-12b):
w? 4?2
c? c?
Aﬂ
vr Les

K =

il

= __.__An
Ac Lo Ler’ (2-21)

The inequality in Equation (2-20) now becomes

Ao Lo o 1,
3 Ac Len (2-22)

which is the restriction that resonator dimensions must satisfy to make the

elementary theory applicable.

Example Calculation

Using the numerical example selected in Section 2.1.2, the restriction

becomes

A LE - 10712 « 1.
3V,

The inequality implies
) L. <« 31 cm

and
Ve 2
A = Y& »» 32 cm”, B
I (2-23)

A wave acoustic theory of the Helmholtz resonator which does not place
limitations on cavity dimensions, and which yields somewhat more accurate
expressions for the natural frequencies, was formulated by Bigg.® In view of the
uncertainties brought on by dependence of the sound velocity on temperature as
well as the presence of impurities, the more refined theory need not be

introduced here.



2.3 The Liquid-Filled Cavity Resonator

For gas-filled cavities, the compressibility of the fluid in the cavity short-
circuits the compliance of the boundary, except for unusually high static
pressures. Boundaries were therefore considered rigid in the preceding sections.
Because of the large bulk modulus of liquids, the boundary compliance cannot be

ignored in this section.

The effective bulk modulus of a body of liquid in an elastic boundary is
obtained by combining the compliances of the two media. The bulk modulus of
the liquid is of course p ¢?, as it is for gases but, as already mentioned, it is
comparatively insensitive to pressure and temperature. To illustrate the calcula-
tion of the effective bulk modulus, consider a cylindrical shell of diameter 2r,,
length L., and wall thickness h. The desired insight can be gained from an
elementary mathematical model of the cylindrical boundary whereby the radial
expansion is assumed uniform, the axial expansion of the cavity being ignored.

The hoop stress is computed from simple static equilibrium considerations

¢ = pry/h. (2-24)
The hoop strain is
¢ =0 =PI
E Eh- (2-25)

where E is the Young's modulus. From simple geometric considerations, the

hoop strain can also be related to the uniform radial displacement w where

W = €T,

_ e
Eh (2-26)

The volume strain is
AV _ 2nrsLew
v nrZle
= 2w

ry (2-27)



Substituting Equation (2-26),

AV _ 2PTs

vV~ Eh’ (2-28)
Consequently, the bulk modulus of the shell, B, computed from Equation (2-1)
{with a sign reversal because the pressure acts outward on the boundary, while the

definition in Equation (2-1) assumes an inward-acting pressure}, is

B = % (2-29)

A slightly different expression would have been obtained had the axial strain

been taken into account. The reader can, as an exercise, compute the effective
bulk modulus contribution of various shells by referring to familiar handbooks.”
The effective volume change which determines the cavity stiffness at the neck-
cavity interface is obtained by adding the compression of the liquid and the

expansion of the boundary

AV - -p (_l_. + 2'_!1)

VvV pc2 Eh/” [2"30)
This can be generalized to arbitrary boundary geometries

& = pBLE. (2-31)

v

where B, is the bulk modulus of the liquid. The effective bulk modulus

is therefore
Ber = (Bl + B})'

= BL(I + &)1

Bs (2-32)

Referring to electric circuit theory, the two bulk moduli are seen to add in
parallel. Clearly, if the shell is quite flexible, the compressibility of the liquid is

short-circuited.



Example Calculation

As a realistic example, consider a cylindrical steel shell (E=2.1x
10'2 n bar) containing water (B, = 2.2 x 10'° u bar} , the thickness-to-radius ratio

heing h/r, = 1/50. The ratio of the two bulk moduli is

&‘, — 27&
B. Eh
= 1.04. (2-33)

The effective bulk modulus, Equation (2-32), therefore becomes

10
By = 2:2%10
0 Loa)

= 1.1 x 101% y bar. (2-34)

This can now be substituted in Equation (2-12). Retaining resonator dimensions
assumed earlier, the natural frequency of the liquid-filled resonator is

{ 1 (B A1/2 I'q)lﬂ
"7 2z \096pV

= 958 Hz. (2-35)

Even though the natural frequency is considerably higher than for the air-
filled cavity, the inequality underlying the Helmholtz mathematical model is
readily satisfied because the sound velocity is correspondingly larger. In other
words, the cavity dimension rather than the acoustic fluid determines whether
the Helmholiz model is valid. This is apparent from the inequality in Equa-
tion (2-22) which does not contain any of the acoustic fluid parameters. The
above calculation does contain other approximations, the kinetic energy not only
of the shell wall but also of the radial motion of the liquid in the cavity having been
ignored. This is, however, small compared to the kinetic energy of the liquid

sloshing through the orifice for the small ratic A,/A. assumed here.

It is interesting to note that this result could have been obtained directly
from Equation (2-12) had the Korteweg-Lamb correction been applied to the
sound velocily in an elastic pipe.® The Korteweg-Lamb correction will be dis-

cussed further in Section 4.1.



2.4 Helmholtz Resonator Damping

So far only the reactive portion of the resonator impedance has been
analyzed. When resonators are used for the purpose of sound absorption, screens
or fiberglass are inserted in the orifice to enhance sound dissipation, the maxi-
mum absorption cross-section being achieved when the acoustic and frictional
resistance are matched. As long as A, <<A?, the acoustic resistance depends
primarily on the orifice area A, and only mildly on its shape. Therefore, results
strictly applicable to circular orifices whose acoustic resistance is?

R, = 2rp > A /c, (2-36)

are only considered. Referring to Equation (2-12}, the acoustic resistance at

resonance (f = f,) becomes
3
pcAl

Ra = 2n Ve Lenr

5/2
pcAJ

ZTCVP (2_37)

where use has been made of Equation (2-14b).
The corresponding acoustic quality factor, which is a measure of the
sharpness of the resonance of the Helmholtz resonator, is

- (K m]l/'z

= R, (2-38)

Combining Equations (2-6), (2-9}, and (2-37),

1/2

Qil - 2TC V(‘ Lal'ﬂ-
A3 (2-39a)
For the numerical example selected earlier, for which Ly = 1/2, the quality
factor becomes
Q. = 2n(V/AY?)?
= 2n(10%/10%%)'"* = 35. (2-39D)

It is noteworthy that the fluid parameters drop out, and that the quality factor is
therefore independent of pressure and temperature. This, of course, does not
follow for the resistance, Equation (2-37), which is proportional to pc, since



CcC = a Co P ES_ Rk
pe = poco P (237, (2-40)
where p,c, = 42.8 i bar/cm/sec for air, P is in atmospheres, and T is in

degrees Kelvin,

Additional damping is provided by fluid viscosity and to a much lesser
extent by heat conduction. For air in the absence of a screen, the viscous
resistance is typically small compared to the acoustic resistance. In our notation,

the viscous resistance is

R, = 2RSAU(£'°—S + 2). (2-41)

(Reference 3, Equation (11), where 8. . the viscous end correction, is taken equal

to 4 R,/pc, rather than the theoretical result 2 R,/pc, to account for experi-

mental results also reported in Reference 3). The viscous surface resistance in
terms of the viscosity p is

Ry = (rupi)/z, (2-42)

Normalizing to the acoustic resistance, the resistance ratio at resonance is
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R = nflo+ ) (ﬁ&)"z (Vf? L%

Ra pe A%
- 8“ 12 VEM =
= 2n (p—c) Allle =0 (2-43a)

where use has been made of Equations (2-12b) and (2-14b). The relevant
parameters for air and water are tabulated in Table 2-1, as are the results of the
resistance calculations for the resonator parameters used in earlier examples.
The resultant Q accounting both for acoustical and viscous losses is

g=a[1+R] (2-43b)

and also tabulated in Table 2-1. Even though the application of Equations (2-41)
and (2-42) to water is a crude approximation, it adequately shows that, in the
absence of an energy-absorbing device such as a screen, the resistance is mostly
associated with the radiation resistance for the Helmholtz resonator
parameters selected.



Table 2-1

Examples of Resistance Calculations for
the Air and the Water-Filled Resonator

Parameter - =A2153°K) Water
Symbol Units
H pbar s 1.81 x 104 0.01
p g/cm? 1.21 x 103 1.0
u/p cm2/s 0.15 0.01
c cm/s 3.43x 104 1.48 x 105
f, Hz 307 958
R, dimensionless
'ﬁ; see Eq. (2-43)a] 0.27 0.034
Q dimensionless 35 35
a [see Eq. (2-39b))
Q dimensionless 08
[see Eq. (2-43b)) 34




2.5 The Helmholtz Resonator as a Side Branch

Although sound propagation in pipes will be studied in detail in Sections 3,
4, and 5, this section considers an elementary low-frequency situation of an
incident plane sound wave propagating in a pipe. The purpose of this example is
to demonstrate an application of the Helmholtz model and its electrical circuit
analog to determine transmission loss as a function of frequency. Neglecting pipe
wall compliance, the pressure propagates at the speed of sound in the fluid in the
form of
pi(x) = P, exp (ikx). (2-44)

Since the pipe cross-sectional area. A, . generally differs from A4, , it is desirable
to introduce volume velocity. The volume velocity of the incident wave is

Ap p]

O == (2-45)

The acoustic impedance in units of pressure per volume velocity is

Z, = PE.
Ap (2-46a)
That of the Helmholtz resonator is
Z“”—“—i—(g-—mM)'{"&(l*—&)
AZ '\ Al R,

QO O

(2-46h)
- _f_ls__[(l _i_L) _ﬁ}
2T ng Q fn f?l

The reflected pressure can now be computed. The impedance at the pipe
resonator junction is represented by a shunt circuit in Figure 2-3, where the
Helmholtz resonator is short-circuiting energy flow into the downstream portion
of the pipe. Using the subscripts R and T to identify the reflected and trans-
mitted pressure, respectively,

prlx) = Py exp (-ikx) ,

p_R Ap
pe (2-47a)
pr(x) = Py exp (ikx),

Ok = -

pT Ap

Qr = :
pe (2-47b)
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Figure 2-3. The Analog Circuit of a Pipe Provided With a Side Branch
in the Form of a Helmholtz Resonator.

1z,

Zy

pipe impedance, Equation (2-46a).
resonator impedance, Equation (2-46b).]




Continuity of pressure and of volume velocity at x = 0 requires that

PR + Pi = PT' (2'488.]
= Py, (2-48Db)
Qi+ Or = Gr+Gn (2-48c¢)
W = Pu
= (2-48d)
where the subscript H

identifies the Helmholtz resonator.

Substituting Equa-
tions (2-45), (2-47a}, (2-47b}, and {2-48d) for the volume velocities, and using
Equations (2-46a) and (2-48b), Equation {2-48c) becomes

&_&=PT(_L+L
Zy  Ip Zy Zn

(2-49)
Consequently, the impedance just upstream of the resonator is (Figure 2-3)

Z= (Z['Jl + Z{[l)-l . (2-50)

The simultaneous equations, Equations {2-48a) and (2-49), can now be solved for
the reflected and transmitted pressure ratios:

Pr _ (1 + _ZP__)I
Py 27yt
(2-51)
Pr _( 27n 1)"
P; Zn :

At the Helmholtz resonance, the resonator impedance, Equation (2-46b),
reduces, with the application of Equations (2-12a) and (2-35), to

&=&%1+&)

’ f= fn.
A2

1

(2-52)
At resonance, the resonator short-circuits the transmission of acoustic energy,

i.e., |Pr/P/| approaches unity and |P;/P, | =0 . The resonator effectively simu-
lates a pressure release termination. The transmission loss is

TL = -20 log mI;ﬁ
(2-53)
2
= 2o1ogm(1+_pi%) f=1,.
2A, R,

2-18



Example Calculation

For the resonator parameters used earlier, and selecting a pipe whose
cross-sectional area A, = 10A,,

’

2ApRa _ ApAY? (

1+&] . = fa
pcA% ch

Ra

0.127 for the air-filled resonator, and
0.101 for the water-filled resonator. (2-54)

it

Substituting these results in Equation (2-53), one computes a transmission loss of
19.0 dB for the air-filled resonator and of 20.7 dB for the water-filled resonator at
their respective resonances. Sufficiently far from resonance, Zy 1is large com-
pared to Z, and the resonator does not short-circuit the downstream pipe
impedance. Substituting Z; . Equation (2-46b) in lieu of I{,/J“fO in Equation (2-53),

T

the transmission loss at low frequencies becomes

TL

10 logm

1+ pcAZnf
ArK

= 10 logio 11 + (M)z] f? < f2
cAp
=0 as -0 (2-55)
and, at high frequencies, the transmission loss becomes
Az ¥
TL = 10 loglo 1 + _PCHo £2 5 fﬁ?
4nfApM
2
= 101 1 + [—SBo )
Of10 (4anpL£ ]
=0 as f/fn—}w (2'56)

These trends are plotted schematically in Figure 2-4.
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Figure 2-4. Schematic Plot of the Transmission Loss Provided by a
Side Branch in the Form of a Helmholtz Resonator.

2.6 High Incident Pressure Amplitude on a Helmholtz Resonator

The basic discussion of Helmholtz resonators above assumes that the
resonator is excited in a quiescent acoustic medium. The more likely situation in
turbomachinery is one in which a cavity resonator is excited by a grazing flow
across the orifice. The presence of the flow alters both the reactance (i.e., effec-
tive end correction) as well as the resistance of the resonator, thus shifting the
resonance frequency and its quality factor. Unfortunately, the ability to predict
these shifts has only been determined for a few geometries and flow ranges. The

following is a brief summary of pertinent literature and results in this area.

A problem related to grazing flow past a Helmholtz resonator - namely, the
non-linear dependence of the resistance of an orifice on large incident pressure
amplitude - is treated by Ingard.®!9 Here the non-linearity is due to flow sepa-
ration and the formation of a jet on the downstream side of the orifice. This flow
switches from side to side through an excitation period as sketched in Figure 2-5.
Mecasurements made in the orifice show a distortion in the velocity curves with
increasing sound pressure level and a gradual change in phase between the
pressure and velocity. When the incident pressure amplitude exceeds a transition
point, where pressure and velocity in the orifice begin to become distorted, the
non-linear resistance of the orifice is approximately p u?, where u is the

acoustic velocity in the orifice.



Pressure and Velocity
in the orifice becomes
distorted with large
incident pressure
amplitude
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Figure 2-5. Schematic of Non-Linear Flow Separation and
Jet Formation Through a Period of Excitation.
(The source of this excitation is a large incident
pressure amplitude.)




Ingard!® provides a computational procedure to determine the transmission
loss for a high-amplitude incident pressure field. The procedure requires
knowledge of the angle of incidence and pressure amplitude of the wave front.
Both parameters are difficult if not impossible to determine inside turbo-
machinery. An approximation made is to apply the end correction in Equa-
tion (2-10) only once. This will reflect the lack of added mass on the jet side of
the orifice. Equation (2-10) then becomes

Lg = Ly + AL,
(2-57)

/2
= L, + 0.48A ",

The effect of steady (i.e., "DC bias") flow through the orifice is discussed in
Reference 9 where it is concluded that the dependence of orifice resistance on
flow speed is similar to the non-linear dependence on unsteady orifice flow speed.
The effect of a grazing turbulent flow on a resonator duct lining is briefly discussed
in Reference 10. Turbulent pressure fluctuations are viewed as causing a slowly
fluctuating bias flow in the orifice similar to the steady flow discussed above with

corresponding resistance and reactance effects.

An analytical model of a circular cylindrical Helmholtz resonator in the wall
of a duct carrying low subsonic flow is given by Howe in Reference 11. The duct
and the cavity communicate through a slit orifice. Howe's explanation for the
increased resistance of a resonator with a "DC bias" flow is that the vorticity
generated by an incident acoustic pressure fluctuation is swept downstream by the
flow carrying a portion of the acoustic energy with it. Explicit expressions are
derived for the impedance of the cavity as seen by an incident plane wave in the
flow duct. Consistent with the results of Ingard, Howe finds that the cavity
resonance shifts to higher frequency (i.e., smaller end correction) as the flow
Mach number increases. The magnitude of the shift, however, depends on the

dimensions of the cavity, duct, and orifice slit.

Two other references are an experimental study of Helmholtz resonator
excitation by an external flow over a glider fuselage in flight!? and a semi-empirical
study of the effects of grazing flow over an array of resonators.!® Both studies

confirm the reduction in end correction with flow Mach number.



27 Excitation of Resonators by Turbulence

Sound radiation by turbulence-excited Helmholtz resonators will be dis-
cussed. Subsection 2.7.1 provides a description of the turbulent boundary layer;
Subsection 2.7.2 describes the response of a Helmholtz resonator to a turbulent
boundary layer; and Subsection 2.7.3 deals with the acoustic response of cavities of

constant cross-section, i.e., those devoid of the Helmholtz resonator neck.

2.7.1 Description of the Turbulent Boundary Layer

A concise description of the boundary turbulence in terms of cross-spectral
density and correlation length is adequate, particularly because the much debated,
controversial low-wavenumber portion of the spectrum associated with direct
sound radiation from the boundary layer proper, is not specifically relevant to
sound radiation by Helmholtz resonators and cavities. A more detailed discussion
including a review of various models of the low-frequency spectrum is found in
Reference 14. A recent comparison of various mathematical models is available in

Reference 15.

The randomly fluctuating surface pressures exerted on the boundary by the
turbulent boundary layer are expressed in terms of the mean-square value {p?) of

the pressure and of the correlation function R as
{(px.y.t) px+& y+mn t+1)) = {p?) R(En.1). (2-58)

Here x and y are, respectively, the coordinate in the direction parallel and
normal to the flow velocity, £ and m are their respective increments. In a fully
developed turbulent boundary layer, the correlation function does not depend on
the location (x, y) but only on the separation (¢, m) between two points. The
mean square pressure is in the nature of a Bernoulli pressure, being proportional
to p U2, where p is density and U is flow velocity.

The cross-spectral density is the Fourier transform in time of Equa-
tion (2-58)

plEémo) = %{lj R(E 1, 1) exp (iwt) dv

o

(2-59)
= ple)T(E n; ®).

2-23



The spectrum density

5lo) = ) [ Ri0.0 1) d
p (w) o | (0, 0, 1) exp {iwt) dt (2-60)
can be approximated in terms of the boundary layer thickness § as
— 5x 72 3
plw) =z X0 p U8 | (2-61)

1 + (@8/4n U)°

In Reference 13a, for fully developed turbulence in a pipe or duct, 2§ equals the
conduit’s transverse dimension. The second factor in Equation (2-59) is the

normalized cross-spectral density
T(&nw) = §ﬁﬁl R(& n. 1) .
P (o (2-62)

which can be approximated as the product of the &- and n-dependent cross-

spectral densities

T(E mw) =T O, ) TO,N; o). (2-63)

The two factors in Equation (2-63) are formulated in terms of the corresponding

Strouhal numbers

S = 28
g U.
and (2-64)
Sy = 27
n U.

where U, is the convection velocity. The ratio U, /U varies with eddy wave-
number and Reynolds number. A representative value for this ratio is 0.6 (Refer-
ence 14, page 744). The two factors in Equation (2-63) can now be expressed as

T(E O, ®) = exp (-0.11 | S |} cos S,
(2-65a)
T(O, m; @) = exp (-0.60 |Sn|).

The latter factor indicates rapid monotonic decay in the direction normal to the
flow direction. The former decays slowly in an oscillatory manner, in the

dircction of the flow.



One can define a correlation length in terms of the limits of S; associated
with a change in sign of the cross-spectral density:
-E < S <
2 2 {2-65Db)
This Strouhal number range can be expressed in a physically more meaningful

manner by introducing an unconventional parameter not found in the literature,

e.g., the convection wavelength

F (2-65¢)

The inequality in Equation (2-65b) now becomes

he < £ < Ae
4 4 (2-65d)

A meaningful correlation length, £, can therefore be defined as equivalent to A, /2 .

9.7.2 Helmholtz Resonator Response to the Turbulent Boundary Layer

The natural frequency of the resonator, Equation (2-12), is altered by mean
flow which modifies the entrained mass as well as the radiation resistance, as
summarized in Section 2.6 and in References 9, 10, 11, 15, and 16. The experi-
mental study which specifically addresses the response of Helmholtz resonators!?
concludes that in most cases the outside end correction is wiped out by mean
flow, shifting the natural frequency upward, a conclusion consistent with that of
the other experimental studies. Reference 12 does, however, conclude that in
some cases the outside end correction remains unchanged or is even increased by
mean flow. Obviously, additional studies are required to reconcile apparently con-
flicting experimental results. The resistive component of the acoustic impedance

of the resonator neck increases with flow velocity.
The experimental study in Reference 12 indicates a strong response when

2dq fa = g
o= (2-66a)

or
A/ 2 (2-66b)

o,
)
n



where d, is the Helmholtz resonator neck diameter and f, is either the Helm-
holtz resonance frequency, Equation (2-12), or the fundamental standing wave or
organ pipe resonance. For the latter, the effective cavity neck length, L.,

measures one acoustic half-wavelength, so the natural frequency would be

f, = ¢
2L 4 (2-67a)

or

Lg = A/2. (2-67b)

1

Once again, the convection wavelength defined in Equation (2-65¢) can be
introduced to express the condition for strong coupling, Equation (2-66), in a

physically insightful manner if
d, = A./2. (2-68)

The result in Equation (2-66) is based on a limited number of experiments
encompassing three values of d, /8 (between 1/4 and 1/2), and a single ratio
8/L =6 where L is the resonator neck length (0.32 cm). The boundary layer
thickness & is 2 cm. The free-stream velocity U is 30 m/s and air is the

acoustic fluid. The results are summarized in dimensjonless form in Figure 2-6.
The pressure enhancement at resonance is of the order of 30 dB. The peak in
Figure 2-6 occurs for

od, /u, = 40, (2-69a)

where the friction velocity u, is defined and related to U, in the caption of that

figure. Expressing u, in terms of the convection velocity U,

wd, /U, = 2d,f/U,)n
2n / A, (2-69b)

I

= 40/15,

This is consistent with Equation (2-66) since (40/15n) is of a first order

of magnitude.

It is useful to interpret these experimental results in terms of the standard

mathematical model of the turbulent boundary layer presented in Subsection 2.7.1.
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Relating the resonator neck diameter d, to £, the resonance condition in Equa-
tion (2-66) is equivalent to a Strouhal number spanning the range of -n/2 to /2,
l.e., to a neck diameter d, across which the cross-spectral density remains

positive. This is consistent with the results formulated in Equations (2-65b,c,d).

Strong coupling between the turbulent boundary layer and the resonator
occurs when the resonator neck measures one convection half-wavelength,
Equation (2-65d). When the corresponding frequency coincides with either the
Helmholtz resonance frequency, Equation {2-12), or the organ pipe fundamental
natural frequency, Equation (2-67), the resonance peaks of the pressure spectrum
displayed in Figure 2-6 takes place. Clearly, referring to Equation (2-66), the
Helmholtz resonance being characterized by the smaller of the two resonance
natural frequencies is excited at a lower convection velocity than the organ pipe

resornarnce.

2.7.3 Turbulence Excitation of Cavities of Uniformm Cross-Section

The response of cavities of uniform cross-section displays two types of
resonance. The primary one is the depth resonance. Insightful results were
obtained for a cavity in the form of a rectangular parallelepiped one of whose six
faces was left open to air flow in a wind tunnel.’” With the goal of approximating
two-dimensional flow conditions, the dimension perpendicular to the direction
was large compared to the gap width b paralle! to flow. As anticipated, an organ

pipe depth resonance is observed when the depth d of the cavity is much larger

than its width b:
b << 1
f =< fd (2-70)

4d

n

> o
o e

For this situation, the end correction is negligible. For aspect ratios b/d which
are not negligible, resonances are observed at a lower frequency (see Figure 2-7)

-1

£ = .c { 1+ 0.65(9)3“] .

4d d (2-71)

Multiple resonances are observed for some values of b/d . These groups of peaks

correspond to roughly constant Strouhal numbers. The cause of these multiple
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resonances is not explained by existing theory, which associates depth mode
resonances with maxima of the expression

p% = { Rsinkd)? + (Xsinkd - cos kd? }'/Z. (2-72)

In Equation (2-72), p and p; are, respectively, the RMS pressure amplitude at
the cavity base and mouth, and k is the wavenumber 2n/A. R and X are compli-
cated functions tabulated in Reference 17. As anticipated from the impedance
components of the acoustically compact piston radiator for k2 b2 << 1, R varies
approximately as (kb)? while X grows linearly with kb . R and X are therefore in
the nature of the resistive and reactive components of the impedance ratio.
Consequently, for small kb, where the cosine is much larger than the R and X
terms, the pressure ratio displays a maximum for the first root of cos kd , which
corresponds to Equation (2-70). The theoretical basis of depth mode resonances,
which is seen to be in satisfactory agreement with measurements, can be found in

a paper by Plumblee et al.!8

Equation (2-72) does not involve either the flow velocity or the convection
velocity. Consequently, one would anticipate resonances at any flow velocity.
This, however, is not the case. The reason is that the velocity must be such that

the Strouhal number
- b
S =Y (2-73)

is compatible with the shear layer feedback mechanism. The empirical Strouhal

number proposed by Rossiter!? is

o (17"‘1/4)[IJCIU] . m=1,2
1+M (U, /U) (2-74a)

(3n/2) U. /U, m=1
M<< 1

SE‘ =

(2-74b, 2-74c¢)

(7x/2) U, /U, m=2

where M is the Mach number. Equating Equations (2-74b) and (2-74c) to

Equation (2-73), one obtains two convection velocities:

UC=4W£._W‘ m=1

3
Mce 1
U= b, m=2 (275



Rossiter showed that under resonant conditions, the shear layer develops into a
series of eddies having the same rotational direction, effectively like one-half of a
Karman vortex street. Strouhal numbers compatible with experimentally
observed resonances are plotted in Figure 2-8. These resonances require that the
frequency of which Equation (2-72) displays a maximum satisfy Equation (2-74).
These twin requirements explain why depth resonance, Equation (2-72), is
possible only at discrete velocities. For b/d<1 and M <0.18, the principal
cavity pressure resonances observed occur in the fundamental depth mode with
m = 1 and 2. For small Mach numbers, and small values of b/d, these require-
ments are satisfied by convection velocities obtained by substituting the funda-

mental depth resonance frequency, Equations {2-70), in Equations (2-75):

U.=¢2, m=1

3d
M, b/d<«< 1, f=c/4d (2-76)
UC = g.l_l . m= 2
7d
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Figure 2-8. Plot of Strouhal Number Versus Cavity Depth for
Resonant Conditions. (Reproduced from East.!7)
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CHAPTER 3
ACOUSTIC FILTERS AND NETWORKS

by Robert Noreen
Wyle Laboratories

Turbomachinery pipe systems containing propagating acoustic waves are
not simply constant area straight pipes with uniform pressure and temperature.
Rather, the pipes contain changes in cross-sectional area, pressure, and
temperature, and often have openings in a wall that lead to a cavity. Generally
these pipe changes create a change in the acoustic impedance of the pipe and
thus create a reflected acoustic wave. Interference between the incident and the
reflected waves then causes a decrease in the energy transmitted along the pipe,

i.e., the impedance change causes a pipe transmission loss.

Since the change in acoustic impedance for most changes in pipe
conditions is a function of frequency, the transmission loss corresponding to this
impedance change is also a function of frequency. Thus an impedance change is
an acoustic filter, passing acoustic energy at some frequencies while blocking this
energy at other frequencies. Pipe systems often contain many changes in area or
conditions, resulting in multiple impedance changes with differing frequency

relationships, and thus may be considered as a type of filter network.

The pipe elements described in the previous chapter are either acoustic
filters themselves, when considered as single pipe elements, or can be easily
combined with other elements to make a filter. A cavity on one side of a pipe can
form a Helmholtz resonator, and then would be an acoustic filter as shown
previously in Figure 2-3. A change in pipe cross-sectional area creates reflections
and, if separated some distance from another pipe impedance change, will create
a pipe transmission loss that is a function of both frequency and the distance

between the pipe changes — another example of an acoustic filter.

Combinations of these relatively simple elements can produce a complex
pipe system with many impedance changes having widely varying transmis-
sion loss versus frequency characteristics. Many of the pipe systems within
turbomachinery can be modeled as combinations of these individual simple
elements. This chapter will show how to calculate the acoustic performance of a

pipe system consisting of combinations of simple elements by using a transfer



matrix technique. Section 3.1 defines pipe acoustic impedance and transmission
loss. Section 3.2 presents calculation methods and examples for simple networks
containing only a few elements. Section 3.3 presents the transfer matrix method
for analyzing acoustic pipe systems containing any number of elements, if.e., a
network, and gives example calculations. Section 3.4 gives a brief description of
how the transfer matrix method is used to model pipe systems with mean flow

and energy losses with an example that includes mean flow.

3.1 Pipe Acoustic Impedance and Transmission Loss

3.1.1 Pipe Acoustic Impedance

The specific or characteristic (both terms are used) acoustic impedance of
the gas or medium supporting the propagation of an acoustic wave is a charac-

teristic of the medium and has a single definition
z, = p/u (3-1)

where 2z, specific acoustic impedance,

P
u

i

acoustic pressure, and

i

acoustic particle velocity.

For acoustic pressure variations small enough to be considered isentropic, the

specific impedance for plane wave propagation in a stationary medium is

Zyp = PC (3-2)

where  z,, specific acoustic impedance of a plane wave,

ambient density, and

o
Il

speed of sound.

g
]

The acoustic impedance of a pipe can have several definitions - all of which
can be useful - and the most convenient definition to use will depend upon the
specifics of the particular problem. The most common definition is probably that
used earlier in Equation (2-46a) and by Kinsler and Frey,! which is based upon the

acoustic volume velocity in the pipe, A, u

= ..._P_.._ = 2
Zv A.pu Ap (3_3)



acoustic impedance of pipe, based on volume velocity, and

where Z,

A,

For a plane wave in a stationary medium, this acoustic impedance becomes

It

cross-sectional area of pipe.

C
A (3-4)

=

Zyp =

Since both the density and speed of sound are functions of temperature, for
actual calculations on problems in which the pipe temperature can vary it is

generally more convenient to define a pipe impedance based on the acoustic mass

velocity in the pipe, p A, u as

- P _ =
Zm——m-—-———z‘i——z. (3_5)

- _pCc _ =
Sy el WS (3-6)

This is the definition of pipe impedance that will be used in this chapter, and
follows Munjal.2 To simplify notation in later sections, Z, will be denoted by Z
and Z.,, will be denoted by {. These impedance definitions are summarized in

Table 3-1.

Table 3-1

Definitions of Acoustic Impedance Used in Text

Parameter General Plane Wave
ifi i s - p
Specific acoustic impedance u = 0 z, =pc
Acoustic impedance based on Z, = P _ pC
acoustic volume flow, A u Au Ny Zyp = A,
p
£ = Z = pPc
Acoustic impedance based on "opAuU mrep Ay
acoustic mass flow, p A u z,
= = Z - _.9_.. =
P A, A g




The expressions for impedance given above assumed a single wave
propagating in the positive direction. Most pipe problems will involve two waves -
an incident wave propagating in the positive direction and a reflected wave
propagating in the negative direction. Using the basic wave equations for a pipe

containing incident and reflected waves it can be shown that

Incident Wave: px.t)/u = pc,
(3-7)

Reflected Wave: pgix.t)/u = -pc,

where the subscript "i" designates the incident wave amplitude and the
subscript "R" designates the reflected wave amplitude. Using these relationships,

the impedance of a pipe containing both waves is

— Pi+Pr
Z= 55 (3-8)

3.1.2 Pipe Transmission Loss

The acoustic performance of a pipe is generally measured by the amount of
acoustic power reflected or transmitted by the pipe, usually in terms of the
amount of power initially incident on the pipe. The transmission coefficient is

simply the ratio of transmitted to incident power

o = W/W, ' (3-9)
where o, = transmission coefficient,
W, = incident acoustic power, and
W, = transmitted acoustic power.

The transmission loss, TL, of a pipe or pipe element is

TL =L - L (3-10)
where L, = incident acoustic power level, and
L, = transmitted acoustic power level.

The power level is
L = 10 logio (W/ W) , (3-11)

where W, , the reference power level, is generally 1 picowatt. The transmission

loss of a pipe is thus



TL

n

10 log,o (W,/W (3-12)

or

TL -10 log,q (o) . (3-13)

This definition of transmission loss provides positive values for the usual

situation of transmitted power being less than incident power.

The acoustic power of a propagating wave in a pipe is related to the acoustic

pressure and particle velocity by

_ Prms Ums
W= S A (3-14)

where the subscript "rms" designates the root-mean-square value of the

acoustic variable.

Combining this with the impedance from Equations (3-5) and (3-8) and

assuming a plane wave,

2p8
For a pipe having known inlet and outlet areas. a fluid with known temperatures

and densities, the transmission loss is

2
TL = 101 51} [ [(Prmsl;} )
Oglo {[ [.«j [ pi] (prrns)t (3'16]
and the transmission coefficient is
o) ra [ e, I
> hj [pt] l: (Prms)l} (3'17)

where Prms = I'Ms magnitude of the acoustic pressure,

indicates the incident wave, and

()
(e

Thus, given the pipe areas and temperatures, a determination of the rms

indicates the transmitted wave,

il

magnitudes of the incident and transmitted acoustic pressures will provide both

the transmission coefficient and the transmission loss of the pipe.



3.2 Calculation Methods for Simple Networks

In Sections 3.2.1 and 3.2.2, the transmission loss of two simple pipe
configurations is derived using the "classical” method of filter network evaluation
which, simply stated, is to write down the equations which describe the con-
figuration or network and solve them for TL. Section 3.2.3 then provides a brief
generalization and discussion of the approach. The methods shown in this section
can be found in nearly any standard text on acoustics, with this section generally
following Reference 1, except for the use of acoustic mass velocity instead of

acoustic volume velocity.

3.2.1 Single-Element Configuration

The acoustic impedance, Z, of an element is a complex number, which can
be written in the form
Z =R +iX, (3-18)

where R is the real part and X is the imaginary part.

For a section of pipe containing a single side branch as shown in Figure 3-1,

p = AI ei(mt—kx] +B1 el(mt+kx) , (3'19)
P = A, ell@t) (3-20)
ps = A, ellot-kd) 4 B, ellot+lo (3-21)

where w = 2nf, t istime, and k is wave number.

The "As" are complex constants setting the magnitude and phase of the incident
waves and the "Bs" are complex constants for the reflected waves. If the cross-
section dimensions of the pipe and the branch opening are assumed to be small

compared to the wavelengths of the frequencies of interest, then
Ps = P2 = P1-

If it is also assumed that the branch is at the origin of the coordinate system
and that there is an anechoic termination downstream, meaning the pipe is either
infinitely long or otherwise terminates without creating any reflections, then
x=0,B,=0, and
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Figure 3-1. Single-Element Configuration.




Ay eiot 4 133 elnt = A, eint = A] elot

A3 + B3 = Az = A[ (3'22)

The impedances for the pipe sections are

- Pa _ Az +Bs
%= C*(As—Bq)' (3-23)
= Pz
Zy = Ve " (3-24)
7, = 13_:=5x_11=g1, (3-25)
where the v's are the mass velocities of the corresponding pipe elements.
The incident mass flow is conserved, so
Va = Vo + Vy (3-26)
or, since the pressures at 1, 2, and 3 are equal, it follows that
4 -1 4. 1
Zs 22 Zi (3-27)
so that
i AB_BS) - __,L + ..,];.
L, ) \As+B3 Z; (3-28)

Assuming there are no temperature changes within the pipe and that the
. upstream and downstream pipe areas are equal, {3 =, =, then Equation (3-28)

can be rewritten as

(%) (:;gi) =% "li (3-29)

This can be rearranged to solve for the reflected pressure in terms of the incident

pressure,

R O
27+ 8 {3-30)
Using Equation (3-22) to eliminate B;, one obtains

As _ 2+ (L/2)

Al Z2 (3-31)



Using Z, = R + iX, the transmission loss is

2 2 w2
TL = 1010gm(%’:) - IOIOgm{%}

(3-32)

Example Calculation

As an example, a Helmholtz resonator can be selected for the branch
element. Assuming no acoustic energy is lost in the neck of the resonator, the

real and imaginary parts of the branch impedance z, are

R =0,
X = obor - O (3-33)
where, as in Figure 2-1,
Ly = effective length of resonator neck = L, + AL, + AL;;
use Equation (2-7) for AL, and Al; ;
A, = cross-sectional area of resonator neck; and
V. = Volume of resonator cavity.

Figure 3-2 shows the transmission Joss calculated by Equation (3-32) for the

following gas and resonator characteristics:

c = 1,670 ft/sec,

A, = 3.41 10-4 ft2 (1/4-inch diameter),

A, = 3.41 104 ft? (1/4-inch diameter),

V., = 2.89 103 {t3 (5in?, and

Ly = 0.026 ft (0.1 inch physical length + 2 (0.85) (A,/m)1/2}.

As shown in Figure 3-2, the transmissjon loss rises to a large peak at 565 Hz, the
resonant frequency of this resonator. then decreases uniformly with increasing

frequency.
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3.2 2 Three-Element Configuration

Figure 3-3 shows a pipe configuration containing three elements: a Helm-

holtz resonator. a section of straight pipe of length L, and then a sudden

contraction to a pipe with an anechoic termination. The pressures and velocities

in each of the five locations are

Vs

P4

V4

P3

V3

P2

V2

Vi

A5+B5,

1 (As-Bs),
CS( )

A3 + Bs,

L (As-Bs),

Az ekl 4+ Bjelkl |

1 (Aze™ - Bget) ,

Ay,

Av
G

(3-34)

(3-35)

(3-36)

(3-37)

(3-38)

{3-39)

(3-40)

(3-41)

(3-42)

(3-43)

Again assuming that the pipe cross-section dimensions are small compared to a

wavelength,

and using continuity of mass flow,

Vs

Ps = Pa.
Ps = Pa.
P2 = P1-
= V4 + V3,
V2=Vl.

(3-44)
(3-45)

(3-46)

(3-47)

(3-48)
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Figure 3-3. Three-Element Configuration.

Equations (3-34) through (3-48) are a set of 15 equations containing 16
unknowns if the impedances, the { and Z terms, are known. If either the incident
pressure, As, is known or if only the ratio of A;/A, is desired, the number of
unknowns is reduced to 15 and the system can be solved. Assuming a frequently
occurring configuration where the pipe area and temperature are constant from

location 5 to 2, then

G =8 =0 =¢ (3-49)
and the form of the solution is simplified.

Beginning at the downstream end of the pipe, Equations (3-38) through
(3-43), (3-46), and (3-48) can be used to obtain A; and B, in terms of A,,

= it (G + €
fo = A eﬂ(‘é‘gl_)' (3-50)

BS = Al e-ikL(Cl‘C
20, ) (3-51)



Equations (3-34), (3-38), (3-44), and (3-45) give
Bs = (A3 +B3) - A5 (3-52)

and as in the previous section, Equations (3-34) through (3-39), (3-44), (3-45]),

and (3-47) can be combined

_1_ = _L + _.l__
Zs Z4 Z3’ (3-53)

L(ii‘_?i] =1 4 L(:-BS
(C) s+Bs/  Za (C) +Bs
Now Equation (3-52) can be substituted into Equation {3-54) to obtain Aj in terms

of A; and B;, then Equations (3-50) and (3-51) substituted for A; and B; , and finally

the resulting expression solved for As/A,. Again using R and X for the real and

‘ {(3-54)

imaginary parts of this ratio.

A;/A; = R + X (3-55)

cos (KL) + (_Qf-) sin (kL)‘,
L1124

1

Ii

Bfed

where R

= (M) {18 sin 1y - _Q) KL
X (2) K1+Cl)sm( L} (JZJ cos (kL) ,
and | | = indicates the magnitude of a complex number.

The transmission loss in terms of R and X is
TL = 10 log,, (R? + X2). (3-56)

Figure 3-4 shows values of transmission loss for the sample three-element
pipe configuration based on the same Helmholtz resonator geometry used for
Figure 3-2 combined with a 6-inch-long straight section of 1/4-inch-diameter
pipe then reducing to 1/8-inch diameter with an anechoic termination. The
transmission loss peak from the resonator is obvious at 565 Hz in Figure 3-4 and,
comparing to Figure 3-2, the cyclic variation of transmission loss caused by the
straight pipe section with an impedance change at each end has been combined
with the resonator transmission loss. The peak and minimum values of the cyclic
attenuation repeat at a frequency interval of about 1670 Hz, the frequency where

the length of the straight section corresponds to a half wavelength.
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3.2.3 Discussion

As shown in the previous sections, the method presented for determining
the performance of simple pipe configurations, networks, is based upon setting up
the system of equations that defines the acoustic pressure and velocity relation-
ships within the pipe then solving for the desired performance characteristic.
The examples presented only solved for the pipe transmission loss, but the trans-
mission coefficient is merely the inverse of the same ratio presented as a fraction
instead of a level, and the reflection coefficient can be determined by using the

same techniques but solving for a different pressure ratio.

Four basic concepts are used in determining the system of equations. First,
the pipe impedance, {, relates pressures and velocities in constant area pipe
sections. Second, the assumption of plane wave propagation and wavelengths
large compared to pipe cross-section dimensions provides simplified relation-
ships between acoustic pressures in regions connecting elements. Third, mass
flow continuity provides relationships between velocities at various points in the
pipe. Finally, independently determined expressions for the acoustic impedance

provide pressure and velocity relationships for more complex elements.

Since acoustic impedance functions exist for many common pipe elements
and many seemingly complex pipe systems are simply combinations of a few basic
impedance changes with varying geometries, this method can be applied to
complex pipe configurations. As with the three-element example in Section 3.2.2,
one simply starts at one end of the pipe and writes the equations relating the
acoustic pressures and velocities for each section using pipe or element
impedances as required. Continuity and plane wave propagation are then used to

relate velocities and pressures between sections.

This approach is clearly analogous to that used for determining the
performance of an AC electrical circuit. Detailed analysis of the analogies shows
that they are so accurate that much of the terminology and methods for acoustic
analysis are derived from electrical circuit analysis. Acoustic pressures are anal-
ogous to electrical voltages and the acoustic mass, or volume velocity is analogous
to electrical current. Impedance is the ratio of pressure to velocity in acoustical
analysis and the ratio of voltage to current in electrical analysis. Table 3-2 shows
the quantities and units for the various parameters of this electroacoustic analogy.

Further discussion can be found in nearly any standard acoustics textbook.
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Table 3-2

Major Variables for Electro-Acoustic Analogy

ACOUSTICAL ELECTRICAL
Units
Variable Varable Units
English SI SI
Pressure Ib/ft2 Pascal Potential Volt
Mass
Velocity slug/sec kg/sec Current Amp
Im;]):;lcllgtnce {ft - sec)’! | (m - sec)! Impedance Ohm

Just as in electrical filter network analysis, even though this classical
method will work on an arbitrary pipe configuration or network, significant
difficulties arise when trying to apply the method to a network with more than a
very small number of elements. The basic approach and methods are straight-
forward, but actual calculations very rapidly become quite laborious as the number
of elements increases. The example with only three elements involved a system of

15 equations and unknowns.

Standard computer routines could be used to obtain the solutions of large
systems of equations, but a system of equations corresponds to only a single pipe
configuration. If a simple change is made to the configuration by just adding or
deleting an element, or perhaps rearranging elements, a new set of equations
must be established. This classical method is useful in providing an understanding
of pipe system analysis and performance, but is clearly not efficient for
performance calculations involving actual multi-element configurations. The
transfer matrix method presented in the next sections provides a means of easily
calculating the characteristics of pipes containing any number of elements in

any sequence.



3.3 Transfer Matrix Analysis

The transfer matrix method of network analysis was originally developed
for electrical networks and its application to acoustical networks derives from the
analogy between electrical and acoustical analyses. This method is also called the
transmission matrix or four-pole parameter method and strictly applies to a net-
work of any number of impedance changes but with a single source and a single
termination. The transfer matrix method can be useful in the analysis of networks
with multiple terminations if the network can be divided into single source/
termination portions with the other branches represented by impedances that are
either known or can be evaluated. The presentation and terminology used in this

subsection generally follows Munjal.2

3.3.1 The Transfer Matrix Method

Figure 3-5 shows a schematic representation of a portion of a pipe
containing an impedance change represented by T,. The upstream acoustic
pressure is p, ., the upstream acoustic mass velocity is vy Pn and v,., are the
downstream acoustic pressure and mass velocity, respectively. Since we have
assumed small acoustic variables, they are linearly related and we can define a

matrix [T,] such that

(Tﬂ)11 (Tn)lg
(Tn)y (Tnly

o

Pn-1
Vn

Vn-1

‘ (3-57)

The transfer matrix [T,] relates the upstream and downstream state
variables p and v in terms of the state vectors [p, , vil and [pa. . Vo1l - From the

definition of [T, ] its individual terms are

- Pn Pn
(T")ll - m Va1 =0 ( n)lz T Vo Pr1=01
{(3-58}
(T“)m = p_:TT Vi1 =0 (Tn)22 = V:Ijl |pn—l=0



n n-1

pn Pn-1

ACOUSTIC VARIABLES

UPSTREAM DOWNSTREAM
Pressure = p, Pressure = p,
Mass Velocity = v Mass Velocity = v,

Figure 3-5. Schematic Representation of a Single-Element Pipe
Impedance Change, T, .




If the pipe contains another linear element, T, ,, one can write

Pn-1 (Tn-1),; (Tn-1)1,] [ Pn2

Voer§ | (Tao)y (Tn-l)ﬂ] [V,,AJ (3-59)
or

f: } = [Tn] [Tn-1] fﬂ (3-60)
This can be generalized to yield

[Su] = [Ty) {Toad. . . (T2} [Th] [Sel (3-61)

[Sa] = [Ty] 1Se]. (3-62)
where [Ty] = [T,] [Ta,]...[To]1[T;] is the "total" transfer matrix,

(] = {f“] (3-63)

is the generalized state vector for the upstream or source end of the pipe, and

Po
vo

[So] = (3-64)

is the generalized state vector for the downstream or termination end of the pipe.

The transmission loss for this pipe can be calculated from

TL = 10 logio (5_0) 'rfgrm],
Cn (3-65)
where Tierm = % T + % + G Ty + (%1) Tzz‘ and | [ indicates the magnitude
0 0

of a complex number.

This transfer matrix approach allows calculating the acoustic performance
of a pipe with multiple elements by forming a transfer matrix for each individual
element and then successively multiplying by a cumulative total matrix. This
process avoids the need to set up and solve a large system of simultaneous

equations.



The definition of the transfer matrix terms shows that they are related to
the impedance of the pipe element and two limiting cases for lumped impedances
will provide examples. For a purely "in-line” impedance, Z;, which alters acoustic

pressure but not velocity,

(1] = [1 z,}
=10 1 (3-66)
or for a purely "shunt" impedance, Z,, which alters acoustic velocity but

not pressure,

wa-l,

Using these and the definitions of the element terms, one can develop
generalized transfer matrices for individual elements such as a straight pipe,

Helmholtz resonator, or many others.?

The equations for the matrix elements will be functions of frequency and
include flow and geometry terms. A relatively simple computer model can then
be constructed with separate subprograms that evaluate the transfer matrix terms
of each element type, multiplies an accumulating total transfer matrix by the
element matrix, successively proceeds to the next element repeating the
evaluation of matrix terms and multiplication, and finally calculates the overall
transmission loss. Since the transfer matrix terms are functions of frequency, all
portions of the computer model would loop through a frequency range to provide

transmission loss as a function of frequency.

3.3.2 Transfer Matrices for Typical Elements

This section presents transfer matrices for three pipe elements that are
found in turbomachinery: a straight pipe section, a side-branch Helmholtz
resonator, and a simple "wide mouth" side-branch cavity. Matrices for many other
elements can be found in Reference 2, but the three elements given here repre-

sent many of the turbomachinery pipe impedance changes.



3.3.2.1 Straight-Pipe Section
The transfer matrix terms for a section of straight pipe of length L and

pipe impedance [ are

T, cos(kL) , Ty, =1 sin (kL) ,

(3-68)

il

Ty, -lé— sin (kL) . Ty, = cos(kl) .

Note that because the state variable v is a mass flow, the straight-pipe
matrix contains the pipe cross-sectional area within the impedance {. This area

would not appear in transfer matrix terms for a straight pipe which are based on a
state variable of simply u, or pcu. This also means that separate transfer

matrices for sudden expansions or contractions of the pipe are not required when
acoustic mass flow is used as a state variable; the mass flow does not change even

if the pipe area does. Sudden area changes are reflected in the changes in pipe
impedance { used in the elements on either side of the area change. A sudden

contraction with sections of straight pipe both upstream and downstream would
be modeled as just two separate lengths of pipe with different areas and this area
difference would be included in the individual {'s of the two pipes.

3.32.2 Helmholtz Resonator

The Helmholtz resonator is a "side-branch" pipe element providing a

"shunt" impedance, so its transfer matrix would have the general form of
e o)
17z 1)

where Z is the impedance of the Helmholtz resonator. Again using Z=R+iX and

assuming no energy is lost in the neck of the resonator,

R =20,

wkles _ ¢
Ap wve '

X



where the Helmholtz parameters have the same definitions as given in Equa-
tion (3-33). The individual matrix terms are then

Ty =1, T, = 0,
(3-69)
-i
Tay = X Toy = 1.

3.3.2.3 Simple Cavity

The simple cavity described by this matrix is shown schematically in
Figure 3-6 and is a cavity with constant cross-sectional area, A, , along its depth
and a depth, L., that is long compared to wavelengths of interest. This type of
cavity is another side-branch (shunt) element, but without a neck and having a
large depth; it is not a Helmholtz resonator. Again, the general side-branch form

PN
VZ. 1

but now Z, will be that for a length of straight pipe terminated at one end with

will be

a rigid cap. The impedance, based upon acoustic mass velocity derived from

Reference 2, is
Z. = il cot(kL,). (3-70)

Substituting this expression into the general form:
T_” = 1 v T12 =0 '

{3-71)
Tz

3.3.3 Example Calculations Using Transfer Matrices

This section shows the solution of the same example problems solved in
Sections 3.2.1 and 3.2.2 using the transfer matrix method rather than the

classical method.



) Cross-Section
Area = A,

=<
QC_AC

Figure 3-6. Schematic of Cavity Side Branch.




3.3.3.1 Single-Element Configuration

In analyzing a pipe with only a single element, there is only one transfer
matrix to set up. Since the example selected in Section 3.2.1 is a Helmholtz
resonator, the single matrix is given by Equation (3-69). Using Equation (3-65)

one can obtain the expression for the transmission loss of this single resonator

element
TL = 10]0g10{ (1) [—é— ’ (1) + (%)+(‘YC)+ (1) r}
or
TL = 10 logm{i 4+(%)2”. (3-72)

which is equal to Equation (3-32) when R =0, so the transmission loss deter-
mined by the transfer matrix method with the same element dimensions given in

Section 3.2.1 is exactly that shown in Figure 3-2.

Demonstrating the advantages of the transfer matrix method requires con-

sidering a pipe system with multiple elements as is done in Section 3.3.3.2.

3.3.3.2 Three-Element Configuration

The three-element pipe configuration solved in Section 3.2.2 consisted of a
Helmholtz resonator, a straight-pipe section, and a sudden contraction to an
anechoic termination. This example will use the same physical parameters. The
general transfer matrix method is to form the first matrix, form the second
matrix, multiply them to a current total, form the third matrix, multiply the total
and the third, then evaluate the transmission loss. This example presents a

special case, ending with an anechoically terminated sudden contraction.

The first matrix, [T;], is again the Helmholtz resonator matrix

(Ta),, = 1, (Ta),, = O, 373
(T, = - % (T, = 1.

where X is given by Equation (3-33).
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The second matrix, [T, ], is that for a straight section with a length, L, of 6 inches

(Tg),, = cos (k L), (Tg),, = i, sin(k L),

. (3-74)
(T),, = —sin kL),  (Ta), = cos(kL).

2

Their product, [T5] [Ty]. is
{T32]11 = cos{k L},
(T32)12 =i Cz Sin(k L] '
(3-75)

=1 8

(Taa),, = = cos (kL) + El- sin (k 1) .

2

J

(Tws),, = %5 sin (k1) + cos (KL).

The third element is an anechoically terminated sudden contraction, which
could be modeled as an added straight pipe with the new diameter and arbitrary
length using Equation {3-68). Calculating the transmission loss of a section of
straight pipe,

2 cos? (kL) + 2 sin® (KL} | _ 0

(TL)sp = 10 logio 5 (3-76)

which is why the selection of length would be arbitrary if the sudden contraction
were modeled this way. Since the models presented here do not consider any
viscous losses or losses through the pipe walls, there are no power losses in a

straight pipe section, only phase changes.

The other way to "model’ the sudden contraction element is to simply
consider the new smaller diameter as defining the last pipe impedance in the

expression for transmission loss, which then becomes

TL = 10 loglo{(%)

1

1 [(T:;z)” + %+ U3 (T32)21 + &s (Tsz)n} r}, (3-77)
2 G L

where [, is the impedance for the initial 1/4-inch-diameter pipe sectiomn, £, the

impedance of the 1/ 8-inch-diameter section, and the matrix terms are those from



the product of the two other elements given in Equation (3-75). If the substitution
of these equations into Equation (3-77} is made and the resulting expression
simplified, it reduces to the results given by Equation (3-56). Thus the transmis-
sion loss predicted by the transfer matrix method is exactly the same as shown in

Figure 3-4 for the classical method.

3.4 Mean Flow and Energy Loss

The transfer matrix method can be applied to pipe systems with mean flow
and energy losses by formulating the appropriate relationships for the transfer
matrix terms and including the effects of convection. For a pipe with no losses
but mean flow in the positive direction, there are separate wavenumbers for the

incident and reflected waves

- 2y 379
kp = —O, (3-79)

where U is the mean flow velocity, the subscript "j" again indicates the positive
or incident direction, and the subscript "R" indicates the negative or reflected

direction. Introducing the Mach number, M, and a convected wavenumber, k.

ki = k. (1-M), (3-80)

kg k. (1 + M), (3-81)

where M

U
o

[{)]

k(‘. —_—
c(1-M2)°

With these relationships and the basic wave equations, the resulting pipe

impedance is the same as for a pipe without flow, that is
), = & = fg» (3-82)

(L) = G = -2 (3-83)

where  (

Ce

pipe impedance with no flow and

pipe impedance with flow and no losses.



Since the pipe contains a mean flow, the acoustic waves will be convected
with that flow, and the pipe transmission loss of interest will be for the convected
acoustic power. The relation between the convected and stationary acoustic

variables can be expressed in transfer matrix form as

[Pv] _ 1 M{ pl.
Ve "Mg IJ v (3-84)

If the energy losses in the pipe are considered, the expressions for wave number
are again modified. Following Reference 2, where both viscous and boundary layer

losses are considered,

_k-iA
kB = Tim (3-85)
kK —1A;
ke =
T Tom (3-86)
where k = -(::-)- , and
A, = combined loss factor.
k, can be defined as
K, = k-iA
so that
k, = kp 1 -M), (3-88)
kp = kp (1 + M) {3-89)

However, if the energy losses in the pipe are considered, the impedance of
the pipe is no longer equal to the stationary impedance. The impedance for the

positive or incident wave for a pipe containing mean flow and losses becomes
= 1AL
6, = g1 -1A, (3-90)

where { is the stationary impedance, c/A, . The equation relating the stationary

acoustic variables at either end of a section of straight pipe becomes

cos (ki L) i { sin (ky L) P,
v . {3-91)
1

n

= exp (i Mk, L) {

% sin (kL L) cos (kL L)



Equation (3-84) and its inverse are used to obtain the desired relationship

between the convected variables

[(Pc)n] _ eplMkD |1 M
(Vc)n ] - M2 _M_ 1
g
cos (k. L) il sin(koL)
X
Lentan  costel) (3-92)
L
X .
- _M 1 (VC)n—l

This general procedure can also be applied to other forms of losses such as

acoustically absorbing pipe walls. If there are no losses in the pipe, then
=06 =¢ (3-93)
and Equation (3-92) reduces to

[(pc).,

(Vo) (3-94)

cos (ke 1) ifsin (ke 1) (Pc),-,
J=CXP{-iMkcL] "
Ve 1

%sin[kcL) cos (ke L)

a relatively simple expression for the convected acoustic variables, very similar to
Equation (3-68). Since the viscous or boundary layer losses in most pipe systems
with solid walls are extremely small, they can often be neglected and only the

effects of mean flow considered with the resulting simplification of relationships.

Figure 3-7 shows the results of calculations using the transfer matrix
resulting from Equation (3-94) for the straight section of the three-element
sample problem of Sections 3.2.2 and 3.3.3.2 with and without a mean flow
velocity of 250 ft/sec (M = 0.15). For this particular example, the primary effect of
adding flow is to decrease the period of the cyclic variation at frequencies above
100 Hz, similar to the results for a lengthened straight section between the

Helmholtz resonator and the contraction.
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CHAPTER 4

SOUND PROPAGATION IN PIPES
WITH NO MEAN FLOW

by Miguel C. Junger
Cambridge Acoustical Associates

This chapter deals with the situation in which one of three dimensions of
the fluid-filled space is large or at least comparable to the acoustic wavelength.
Sections 4.1 through 4.4 consider the most important situation where the pipe
diameter measures less than one-half wavelength. In Sections 4.2 and 4.3, stand-
ing wave resonance and anti-resonance frequencies are formulated. Section 4.4
considers the special situation in turbomachinery where a T-tube junction is used
to model the engine inlet and exit chambers. Section 4.5 examines the situation
where the pipe diameter is small enough to allow viscous stresses to play a pre-
dominant role. Section 4.6 considers the short-wavelength range, where higher
order modes characterized by cut-on frequencies begin to propagate. In Sec-

tion 4.8, the sound speed and wave number for two-phase medium is derived.

4.1 The Quasi-Planar Wave

Consider an infinite plane wave propagating in the x-direction:

P, ellwt - kx) |

Incident Wave: p, [x.t)
(4-1)

Reflected Wave: p; (x,1) P, ellot + kx) |

Now envision a rigid pipe aligned with the x-axis, i.e., with the direction of
propagation. Clearly, the pipe being normal to the plane wave front does not
disturb its propagation. Consequently, sound will propagate inside the pipe with
the sound velocity of the infinite plane wave. It will be shown later that, even in a
rigid pipe, waves can propagate with a speed other than the speed of sound.
However, these latter modes of propagation require that the pipe diameter
exceed approximately one-half wavelength (more precisely, 0.57A).

When the pipe contains a liquid, the pipe wall compliance cannot be
ignored compared to that of the liquid. The volume strain of the liquid column in
an elastic duct is again given by Equation (2-31); the phase velocity, ¢, now dips

below the velocity of the liquid, ¢ :



c = (Ba)”
P

[(Bi +B) p]*?

= ¢ [1+(By/B)]'"?, (4-2a)
where ¢ = (—‘)1/2-

This is specialized to circular pipes of radius r, by introducing Equation (2-33)

2B, r 112
L = [1+Z2=L"s S] -
c, [ Eh (4-2b)
=1 - BL_rs, , (M)z <«< 1 (4-2¢)
Eh Eh )

This is the Korteweg-Lamb correction! which was previously mentioned in Sec-
tion 2.3.

For example, for water (Bp =2.25 x 10! p bar) in a glass tube (E =6.03x
10!t p bar) , with a wall thickness-to-radius ratio of 1/10, c¢/c;, = 0.76. Note that
the wave is no longer plane, since the displacement of liquid particles adjoining
the wall displays a substantial radial component. In fact, only the particles located
on the pipe axis undergo a strictly axial displacement. The pressure does not,
however, display a phase reversal over the pipe cross-section. This type of mode

is therefore called quasi-planar.

4.2  Standing Waves: Resonances and Anti-Resonances in Pipes With
Rigid Terminations

Now consider a pipe of finite length L. If the pipe is terminated by a rigid
plug, the axial particle velocity must vanish at x =L . It is recalled from basic fluid

mechanics that Euler's law relates the fluid particle acceleration § to the

pressure gradient

Q
o

é_nau__

t

(4-3a)

o~
Q
]
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For harmonic time dependence, the corresponding velocity and displacement are

- i 9p
PO gx

C pRIE ox (4-3b)

Consequently, for the rigid termination (3 = 0), the pressure must satisfy the

boundary condition

d
_p.=0' sz. (4_4]

gx

The pressure in the fluid column can be formulated as the superposition of
an incident wave traveling in the positive x-direction, e.g., Equation {4-1), and a

reflected pressure traveling in the negative x-direction

px) = Petkx + Pgetke, | (4-5)
where the exp (-int) has been suppressed to simplify the notation.
The pressure gradient at the termination is

ap .
¥ = jk [-P, et 4+ Pgewl],
dx : R (4-6)

For a rigid termination, the derivative satisfying Equation (4-4} requires that
PR = P{ e ki v (4'7)
The resultant pressure, Equation (4-5), now becomes

px) = P [etkx 4 eftkx-2ik) ]

= P, ekl [elkl -t 4 eltkc-1kl) |

= 2P el cos k{L-x). (4-8)



This is a standing wave. The specific acoustic impedance at the drive point,

x=0, is
Zuy = R
u' x=0
=ipck P
dp/ox ' x=0
= ipc cot (kL)
= ipe KL% < 1
i <«<l, (4-9)

Consequently, like the resonator cavity, the liquid column in the closed
cavity acts as a spring when the pipe length is small in terms of wavelengths.
This impedance vanishes when kL =n/2, 3n/2,..., or

L = 4L @2n+1) , n=2012... (4-10)

This is readily envisioned for the fundamental resonance (Figure 4-1a). At x=0,

the pressure is zero and the velocity, in terms of the Reynolds number

Re [u(o)] = %E-L |sin k (x — L) |x-0
(4-11)
= 20 gnkL
pc

peaks when L =A/4. Natural resonant frequencies corresponding to Equa-

tion (4-10) are
f = 2n+ 1} c

rn 4L (4-123.)

These results apply to both gas- and liquid-filled pipes provided one uses Equa-
tion (4-2) for the sound speed (c} of the latter.

The pipe also displays anti-resonances whereby the drive point impedance

is infinite. Referring to Equation (4-9) this occurs when (Figure 4-1b)

kL = nr,
f, = g}% , n=1,2 ... (4-12b)



(a) Resonance, Rigid Termination [Equation (4-12a), n = 0].

{(b) Anti-Resonance, Rigid Termination [Equation (4-12b), n = 1].

X et Lcﬂ. / ————— Lﬁff

(c) Resonance, Pressure-Release Termination [Equation (4-17a), n = 1].

X —— Leg

(d) Anti-Resonance, Pressure-Release Termination (Equation (4-17b}, n = 1].

Figure 4-1. Pressure, p, and Axial Fluid Particle Velocity, u, for Fundamental
Resonance (a, c¢) and anti-resonance (b, d), at end L having rigid (a, b)
or pressure-release (c, d} termination.



4.3 Standing Waves in Open-Ended Pipes

Consider a "pressure release” termination, i.e., a boundary condition which
requires that the pressure at x =L vanish. For a liquid-filled pipe, this is readily
approximated by an open-ended stand pipe. For either a gas- or liquid-filled pipe,
this boundary condition is also approximated by a pipe opening into a space filled
with the same acoustic fluid provided A, <<A?. The interface between the fluid
column and the adjoining extended column is simulated by a virtual piston. The
piston impedance embodies a resistive component R, representing sound radia-
tion, Equation (2-36), and a reactive component associated with the entrained

mass -iop A, AL, , where AL, is the same end correction as for the Helmholtz
resonator, Equation (2-7) (AL, = 0.48 A'/*). Consequently, for A, << A2 , the

impedance ratio at the open end of a pipe is

2
_Zu = kAL, + S8 x=L
pc Ap 2n
1/2
= 2n|-i0.48 b 4+ B )
o) (4-13)

The resistance ratio can be neglected in the long wavelength limit. The
entrained mass is not negligible, but can be accounted for by substituting an
equivalent length L.y, a procedure already familiar from the analysis of the

Helmholtz resonator

Ly = L + AL,

=L + 04847 . (4-14)

In what follows, L.s=L is used when dealing with a water-filled, open-ended
stand pipe, while L. is given by Equation (4-14) when dealing with a pipe
opening into a space filled with the same acoustic fluid. The "pressure-release”

boundary condition, p (L) =0, is satisfied by Equation (4-5) when

Py = -P, el2ik Ler)



The standing wave field therefore becomes

P, [e(-ikx} _ e(ilo: - 2ik Letf)]

i

p{x)
= p, elikLem [elik Lem — i) _ elikx = ik Leti )]

2i P, e LM 5in (k Loy - kx) . (4-15)

The drive point impedance is computed as in Equation (4-9}. However, the
present calculation is approximate in that the radiation resistance in Equa-
tion (4-13) is ignored compared to the reactance. This approximation is valid if
kAlrf?' « 1, an assumption inherent in Equation (4-13)

Im(z,,) = -pc tan (k Ley)

p Ly, K2L% «< 1. (4-16)

R

Consequently, as anticipated, the column of water displays the impedance of a
solid slug of fluid when its length is short in terms of wavelength.

The open pipe displays a resonance when

klg = nn, n=1,2,.

i.e., at frequencies

f, = .nc

aLa n=1,2,... (4-17a)

This situation is illustrated in Figure 4-1c. The open pipe displays an anti-

resonance when (Figure 4-1d)

kLeﬂ'z (M y Il = 1’2,__
2
f _(2n+1c
" TaLa (4-17b)

Consequently, the natural frequencies of the open-ended pipe corresponds to the

anti-resonance frequencies of the closed pipe, and vice versa.



4.4 T-Tube Junction

Consider the acoustic resonance frequency for a "T-tube" junction (Figure 4-2).
This problem has immediate practical application in turbomachinery because of
its resemblance to an engine's inlet and exit volute. The engine inlet and exit
chambers are each formed by wrapping the two branches of the top of a sym-
metrical T-tube around a cylinder and joining both ends together.

The general solution to the T-tube junction may be derived using the
techniques described in Chapters 2 and 3. The interested reader who wishes to

examine the details of this solution should see the paper by Merkli.2

The general solution is rather involved; however, after a few simplifying

assumptions it reduces to

2i 1 tan(ky = F10/pQ Zy tan k1)
pe (ZJ, + ipLtank]) (4-18)

where { = c/A;, and (Z,,]c is the acoustic impedance based upon acoustic volume
velocity at the ¢ end of the pipe (see Figure 4-2). This solution assumes that all
three pipes of the T-tube have the same cross-sectional area and that the ends
a and b are closed.

Figure 4-2. T-Tube Junction.
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In Chapter 3 the resonance {requencies were derived for a pipe section
with a single side branch. In this derivation it was assumed that the tubes were
long in comparison to the radius, making it unnecessary to consider the effective
length due to the junction. When the tubes are short, as in the case of an engine
inlet and exit chamber, corrections must be applied to the tube lengths. Merkli®
shows that when the pipe cross-sectional areas of all three branches of the T-tube

are the same, then

L{.n‘ = LO + AL] + AIQ '
(4-19)
g = L, + Al + Al
where ALy = AL = r(l ——8—),
3n
AlLs = 16 r Lo
3= 2L0'+]0 ’ (4"‘20]
Al = 16x lo
3n 2L()+]0 '

where L, and 1, are the lengths of the purely cylindrical parts of the T-tube as

shown in Figure 4-2.

The general solution, Equation (4-18), can be solved for several special

Cases:

1. The top of the T-tube junction is a special solution in which a standing
wave is confined to the top of the T with a pressure node at the
junction. Consequently, the length of the stem has no effect on the
resonance at the top of the junction. The effective length becomes

Ly = L, +r1 (4'21]

and the resonance frequencies are determined using Equation (4-12a)

where the L appearing in that equation is the effective length.

9. A closed end at ¢ is a special solution for which (Z,), =< . For this

condition, Equation (4-18)} reduces to

35in[%(Lcﬂ+lm)] + sin[%(Leﬁ—leﬂ’)] = 0. (4-22)

This transcendental equation gives the resonances of the T-tube.



3. An open end at ¢ is a special solution for which (ZJC = 0. This is the

condition that applies in most turbomachinery applications. For this

condition, Equation (4-18) reduces to
3 cos [ Q(Lar+lar)] — cos[L(Ler-ler)] = O, (4-23)

In this situation, the end correction, Al, , given in Equation (4-20), must
be modified to account for the open end at ¢. In Section 4.3 it was
shown that the end correction is 0.48 A,'/%, so that Al, in Equa-
tion (4-20) becomes

= 1/2
Al = r(1 _5&1;) + 0.48 A} (4-24)

Finally, when solving for the acoustic resonances in a T-tube junction,
whether it be open or closed at ¢, resonance frequencies given by Equa-
tion (4-12a) at the top of the T are found together with the resonance frequencies

given by Equations (4-22) or (4-23).

4.5  Capillary Tubes

The situations considered so far apply when the pipe diameter measures a
fraction of a wavelength. Before turning to the short-wavelength range in Sec-
tion 4.6, we consider, in this seciton, the extreme long-wave limit where the pipe
radius is comparable to the viscous boundary layer thickness. The equations
governing this situation will be presented in a manner appealing to the intuition
of the fluid mechanics rather than being rigorously derived from basic principles.
The reader who wishes to explore the matter in greater detail is referred to

Rayleigh's® classical work.

Let us first consider the acoustic boundary layer thicknesses on a flat plate.
Rayleigh? (page 317, Equation (5} ) shows that this thickness is

_ u 1/2
d = (;5;) : (4-25a)
where | is the viscosity. Referring to Table 2-1, one computes

d = 9—12/%— cm for air and
f

(4-25b)

d = 0—?/% cm for water .
f



The propagation and attenuation of sound in capillary tubes can be compactly
expressed in terms of this boundary layer thickness. Sound propagates at a lower
velocity in a capillary tube than in a pipe where 271, >>d. The effective phase

velocity c. in the capillary tube is

c, = ¢, (1 - d ) , 2Ts<< AL (4-26)

This wave is markedly attenuated compared to sound propagating in an extended
medium. The attenuation per diameter can be expressed in terms of the

boundary layer thickness:
0y = 5;1@ dB/diam. , (4-27)

where A is the acoustic wavelength in the extended medium. Referring to the
second of Equations (4-25b}, and substituting ¢ =1.48x 105cm/s, the attenuation

per diameter in a water-filled capillary tube becomes

oy = 2.0x 105 f1/2 dB/diam. [water-filled capillary] . (4-28)

where f is in Hz and the diameter is in cm. Consequently, for f= 1000 Hz, a

0.4 cm tube diameter, and a 1 m tube length, the total attenuation is
2 x 105 x 1000Y/2 x 100/0.4 = 0.16 dB.

While this is a modest figure indeed, the attenuation in an extended body of sea
water, owing to viscosity as well as to other factors is a mere 105 to 104 dB/m at
this frequency.* If only viscosity were accounted for in computing attenuation, the

latter figure would be three orders of magnitude smaller.

In gas-filled tubes, the effective viscosity |eg is markedly increased by heat
conduction. For air at room temperature, the effective viscosity required to yield
the observed attenuation is

g = 1.93 1. (4-29)
Consequently, for air the effective boundary layer thickness to be used in
Equation (4-27) is 1.93'/% larger than the one indicated in the first of Equa-
tions (4-25b). Substituting ¢ = 3.43 x 104 em/sec into Equation (4-27), the result-

ing attenuation per diameter is

oy = 4.8x10% fi/2 dB/diam. fair-filled capillary] , (4-30)

where f is in Hz and the diameter is in cm. For the same tube dimensions as

before, one achieves an attenuation of 3.8 dB at 1 kHz.
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4.6 Modal Propagation in Gas-Filled Pipes

So far, we have limited the discussion to wavelengths measuring more than
two pipe diameters, i.e., to quasi-planar waves displaying no phase reversal over
the pipe cross-section and consequently no nodal diameters or circles. For the
quasi-planar mode, the pressure field could be approximated by the solution to
the one-dimensional wave equation, modified where necessary to account for
boundary elasticity. For pipe diameters commensurate with the wavelength, the
pressure field must be formulated as the solution of the three-dimensional wave
equation in cylindrical coordinates, the pressure distribution over the pipe
cross-section now becoming a function of the radial dimension r and of the
circumferential angle ¢ . As in the case of the capillary tube, we shall not derive
the solution rigorously from basic principles but start from an intuitively reason-
able basis. The interested reader can find a self-contained and detailed develop-

ment in Reference 5.

The three-dimensional pressure field in an effectively infinitely long pipe of
radius r; is described by a summation of orthogonal waveguide-type modes whose
radial dependence is formulated in terms of Bessel functions J,, (o, r/r.)

p[r,z,tb) = 2 PumdJn (anm I'/I'.q] Cos [I’l ¢] €Xp [i Yom X]. [4_31)

n.m

The modal amplitudes P,, can be computed in terms of the source distribution
which gives rise to the pressure field. The number of modal circles is m , that of
modal diameters n . If the pressure field does not admit a plane of symmetry,
sin (n ¢} terms must be added. The radial wavenumbers «,,/r, are determined
by the boundary condition at the inside pipe wall. Each mode separately must
match the pipe wall specific acoustic impedance, which will be considered here

to be locally reacting

ipckp
ap/or

_ ipckrsdn (o
Onm J'n (Cnm) ’ (4-32a)




In this section, where we restrict ourselves to gas-filled pipes, the wall
impedances can be taken to be infinite. The boundary condition therefore
becomes

J'n (@nm) = 0. (4-32Db)
For Equation (4-31) to be a solution of the wave equation, the axial wavenumber
(Yom) must be related to the radial wavenumber (o,,/r) and the acoustic wave-
number k as follows
Yom = [k2 - {anm/rs}2]1/2 . [4'338.)
Consequently the axial wavenumber is imaginary, i.e., the mode decays exponen-
tially if k r, < o, . The cut-on frequency, where the mode begins to propagate,
therefore is

fom = € Gnm (4-331)]

21 15

The modal phase velocity in the propagating range is

Cnm = 2nf , > fom
Yrm
_ _ {Cnm 271/2
- C[l (k rs) ] ' (4-34)

The phase velocity decreases monotonically from infinity at the cut-on frequency

to the sound velocity at high frequencies (Figure 4-3).

el

Figure 4-3. Schematic Dispersion Curves for the Phase Velocity ¢,
Equation (4-34), and the Group Velocity Com Equation (4-36b]),
in a Rigid Pipe, the Cut-On Frequency Being Given in Equa-
tion (4-33b}.



For the effectively rigid boundary representative of gas-filled pipes,
Equation (4-32b), the fundamental planar mode has, as expected, a zero cut-on
frequency, since J'; (0) = 0. Consequently, c,, =c at all frequencies, as antici-
pated in Section 4.1. The higher modes are all non-propagating in the low-
frequency range, since they display a finite cut-on frequency. The lowest of these
corresponds to mode n =1, m = 0, a mode displaying one nodal diameter and no
nodal circle, for which «,, = 1.8 . Its cut-on frequency is therefore

fio = 211:_8:; {4-35)

For a 4-inch (10 cm)-diameter water-filled pipe, this yields f,,=4.2kHz. As a
radially oriented dipole located on the pipe axis does not excite the planar mode,
such a source does not generate a propagating wave below 4.2 kHz for the

parameters selected in this example.

While the phase velocity diverges at the cut-on frequency, the modal group
velocity cunm , i.€., the velocity at which energy associated with a wave packet
travels, cannot exceed the sound velocity ¢ . The group velocity is computed from
the dispersion relation®

do
d Yiien '

Cgnm = (4-36a)

Since the planar wave is non-dispersive (y,, = k). both the group and the phase
velocity equal the sound velocity c¢. For all other modes, the phase velocity is
dispersive and therefore differs from the group velocity. Elementary though
laborious calculations which the reader might want to check as an exercise yield
the group velocity

1/2

2
o
Cgnm = c(l—& , krs>omm, > fum.

K2 12

(4-36b)

Consequently, as the frequency approaches the cut-on frequency from above, the
group velocity tends to zero. In the high-frequency limit, it tends to the sound
velocity in the extended fluid medium (Figure 4-3).



4.7 Wave Mode Propagation in Fluid-Filled Non-Rigid Waveguides
The specific impedance of unlined pipes is typically reactive, i.e.,
z, = ix,. (4-37)

Referring to Equation (4-32a), the boundary condition can be expressed as

priJ{ Ts = Fulo) (4-38a)
where
Jn
Folo) = J,:O(i)- (4-38b)

This function is plotted for axisymmetric (n = 0) modes in Figure 4-4. It is
apparent that an infinite reactance, | F0| = o , calls for « =0, i.e., a zero cut-on
frequency, and, since J, (0) =1, a strictly planar wave, as anticipated in the

previous section.

Recall that, in our notation, a negative reactance indicates a mass-
controlled pipe wall. The branches labelled -F, (o) correspond to this situation.
The stiffness-controlled pipe, i.e., x, > 0, cannot be matched by Bessel functions
of real argument, but requires imaginary arguments, i.e., ¢ =1 | a| . This gives rise
to the curve labelled F, (i l a| } in Figure 4-4. The corresponding phase velocity
is obtained from Equation (4-34) where -aZ= |o?| . The phase velocity is less
than the sound velocity in the extended medium as already anticipated from the

Korteweg-Lamb approximation

| 0ol 2]
= } (4-39)

Con = C[1+

The low-frequency reactance of a cylindrical shell was already formulated in

connection with Helmholtz resonators

= Ebh = Eh = f2.f?2
X o r? ck r? o (4-40a)
where f, is the breathing mode resonance frequency
fo= 2 (4-40b)

2nrs
where ¢, is the compressional wave velocity in the pipe wall (= 5.4 x 105 cm/s in

steel). The corresponding dimensionless frequency is

= Cb
b r), = S
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Equation (4-39). The negative values of F, correspond to mass-
controlled pipe wall reactances. (Reproduced from Junger and Feit.5)



Substituting this result in Equation (4-38a), one obtains the boundary condition in

terms of the pipe parameters

Eh = i
ovrvi Fo (ilal), (4-41)

Consider the low-frequency limit k?r2<« 1, where F, (i [a]) is large, its
small-argument asymptotic form being

Foflile|) = 2]al? |af? << 1. (4-42)
Combining Equations (4-41) and (4-42),

(la|])/krs)? = 2 pc?r/Eh, K r2, |e|? <« L (4-43)

When this is substituted in Equation (4-39), one retrieves the Korteweg-Lamb
correction, Equation (4-2), where B =pc?.

At higher frequencies, the pipe wall inertia forces reduce the stiffness-
controlled reactance. However, flexural rigidity, which is proportional to

(h2/12 13 34 8/0 z¢ . keeps the reactance stiffness-controlled even above the ring

resonance. The boundary condition now becomes®

Xu = Eh — kr.c 2 h2 4 4
pckrn  pc2K?r? [1 ( Cb ) * 1212 Vo T - (4-44)
Setting this quantity equal to F, (i Ja]). one solves for the frequency-dependent
valie of |a| . and hence for the phase velocity in Equation {4-39}. The results are

in fair agreement with phase velocity measurements as shown in Figure 4-5.

1.2 I 1 1 | 1 | | i |
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Figure 4-5. Dispersion Curve for the Quasi-Planar Wave in a Liquid (Naphtha)
Column in a Glass Tube: h=0.14 cm, 2r, = 3.04 cm, p, = 2.6,
c=1.21x105cm/s, p=0.74 g/cm* (Reproduced from Junger.?)
Dashed Curves Equation (4-44) for the wall reactance, and
Equation (4-39) with o =1 | a | (see Figure 4-4).

Solid line is the same, but ignores the flexural term in
Equation {4-44). (Reproduced from Field and Boyle.5)
Crosses: experimental points from Reference 8.
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The stiffness component of a soft rubber hose does not embody the flexural
term which prevents the pipe wall from becoming mass-controlled. The hose
therefore presents a mass-like impedance above its ring resonance. Sufficiently
far above that resonance, the membrane-stiffness can also be dropped, the wall

reactance being effectively that of the mass per unit area of hose wall

Xu o~ Psh = Fo f2 f2
pckrs = PTs (@ . SEXT (4-45)

An experimental study was performed on a soft rubber hose in air® {(p./p =
6.5 x 102, h/r, = 0.043). The resulting value of o obtained from the lower -F{a)

branch in Figure 4-4, or from the asymptotic small -o relation

Fo (o) = —-25 . a? << 1 (4-46)
[0 4

is

2\ = 027 ]
((ps/p) (h/rSJ) {4-47)

The phase velocity is obtained from Equation (4-34)

Co1 = 1 - (027 2}‘1/2 -
=[-8 (4-48)

This dispersion curve is plotted in Figure 4-6 together with experimental
points. The velocity ratio was computed from the coincidence cone vertex
angle, 6., of the distribution-in-angle of the sound field radiated as a supersonic

line array, by the hose coupled to a small loudspeaker

Cou - _1 ]
c sin 6, ° (4-49)

where 0, is measured from the hose axis. A physical interpretation of the
enhancement of the effective sound velocity is that the hose responds out of phase
with the pressure exerted by air in the hose, thereby reducing the effective com-

. pliance of the air within a mass-controlled boundary.
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4.8 Sound Propagation in Two-Phase Systems

Sound propagation in a boiling liquid, or in a liquid containing gas bubbles,
shares a fundamental feature with sound propagating in a liquid contained in an
elastic pipe or duct (Section 4.1). The reciprocal of the effective bulk modulus
B.r is the resultant of the compliance of the liquid BL", and of another

component, i.e., the elastic waveguide boundary in the former situation, and the
compliance BS"' of the bubble swarm in the present case. This mathematical
model applies as long as individual gas bubbles or vapor pockets are small in terms
of the liquid-borne sound wavelength. Furthermore, the situation where gas or
vapor has risen under the effect of buoyancy to form a continuous layer above the
liquid is not considered either. This latter situation does not, of course, arise in a
boiling liquid where the vapor bubbles collapse before they coalesce, or in a
zero-gravity environment. The next subsection reviews the thermodynamics of a
two-phase medium. Subsection 4.8.2 derives the sound velocity in various
frequency ranges. Subsection 4.8.3 deals with resonances in pipes containing a

two-phase medium.

4.8.1 Thermodvnamics of a Two-Phase Media

The thermodynamic state of pure substances such as hydrogen and oxygen
is defined by two independent thermodynamic properties. The term "state" is
used to denote the phase (i.e., solid, liquid, vapor) and the pressure, tempera-
ture, etc., at which the substance remains in equilibrium. For conditions experi-
enced in turbomachinery, such as in the SSME, both substances can exist in
liquid and vapor phases through parts of the system. As described in the
following subsection (4.8.2), the sound speed in the substance, being proportional
to the square root of the bulk modulus, varies substantially between liquid and
vapor phases. Furthermore, the sound speed in two-phase mixtures that exist
during boiling or condensation is extremely sensitive to the fractional content of

vapor (i.e., the quality) in the mixture.

Thermodynamic states consisting of liquid-vapor mixtures can exist
between the triple point and the critical point. The triple point is a single state at
which the three phases exist in equilibrium. For oxygen the triple point
temperature and pressure are 97°R and 1.06 psia, while for hydrogen they are
24°R and 0.022 psia. The highest temperature and pressure that a liquid-vapor

mixture can exist in equilibrium is denoted as the critical point. The critical
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point temperature and pressure for oxygen and hydrogen, respectively, are
278°R, 735 psia, and 60°R, 188 psia.

Although all three phases can exist at pressures higher than the critical
pressure, there is no liquid phase at temperatures above the critical temperature.
Consequently, liquid-vapor mixtures can only exist between the triple and critical
point temperatures (97°-278°R for oxygen, 24°-60°R for hydrogen). Within this
range, the pressure at which such mixtures can exist is the saturation pressure
(i.e., the pressure at which boiling or condensation occurs) at the prescribed
temperature. The thermodynamic saturation properties {e.g., pressure and tem-
perature) for both substances are tabulated in chemical handbooks.!® Pressure
and temperature are not independent properties in saturated states. Rather,
either one of these properties along with the quality of the mixture (i.e., the mass

of vapor per total mixture mass) define the state.

In normal operation of the SSME, hydrogen changes phase after leaving the
high-pressure turbopump as it acquires heat in cooling the nozzle and combustion
chamber. Oxygen flows to the combustion chamber as a liquid; however, a portion
of the oxygen flow from the high-pressure turbopump is converted to vapor in the
Pogo suppression system. Except for these areas, both substances are either

liquid or vapor under normal operating conditions.

4.8.2 Sound Velocity in Two-Phase Media

If o is the volume fraction of vapor or gas, the effective density of the

medium is

ap. + (1-0)p,

o
il

(4-50)
(1-o)p. o pc << pr

14

where the subscripts L and c¢ refer, respectively, to the liquid and to the vapor
or gas forming the cavities or bubbles. The sound velocity is formulated as in
Equation (4-2a):

By )"

O
1l

(4-51)
{ta-a)B? + B 1},

L

where B’ is the compliance contributed by the bubble swarm.



This compliance component is the product of the fractional volume of vapor
or gas and of the effective compliance B_' of individual vapor-filled cavities or gas
bubbles. Since the cavities are acoustically compact, sound pressure acts uni-
formly over their entire surface, resulting in a spherically symmetric "breathing
mode" response. The cavity volume and the volume change associated with this

response are, respectively

Vv = Arna’
3 L]
(4-52)
AV = 4maZw,
where a = cavity radius, and
w = radial response.
From the definition of bulk modulus,
B, = -p/lAv/V)
(4-53)
= -p/@Bw/a).

For air bubbles, B, = 1.4P.. , where P.. is the static pressure. The spring stiffness

K per unit surface area is
K = 3B./a. (4-54)
Assuming that the bubble swarm is sparse enough to avoid overlap of the nearfield
of neighboring cavities, the entrained mass per unit area is!!-1?
M= p.a. {4-55)
The resultant entrained mass of the breathing mode of the entire cavity, 4ntazM ,

therefore equals three times the mass of the displaced volume of liquid. The

natural frequency for air bubbles in water is

W, = (K/M)”2
= BB./p)"?/a
= 2.0x 10? (P/atm) / (a/cm) (rad/sec),
k,oa = (3B./B.)"?

1.4 x 102 P.. / atm (dimensionless). {4-56)

It



The compliance of individual cavities is enhanced by resonance effects, each
bubble responding in its breathing mode as a single-degree-of-freedom oscillator
of natural frequency ®,. For cavities of uniform size, i.e., of identical natural fre-
quency w,, the compliance BS‘1 of the bubble swarm takes the simple form

Ble @ 1- @ _ 1o}
s B. 0)3 ©0
(4-57)
= & o« ol
Be

where the damping constant & has viscous, thermodynamic, and acoustic radia-
tion components!3 (Figure 4-7). As resonance is approached, }35’1 becomes very

large and imaginary

BS'1 =ie/B.&, ©=0,. (4-58)
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Figure 4-7. Theoretical Thermal, Radiation, Viscous, and Total
Damping Constants for Resonant Air Bubbles in Water.
(Reproduced from Devin.}?) To relate this to bubble size,
se¢c Equation (4-56). The radiation damping constant is
k, a. The damping constant equals the reciprocal of

the resonance quality factor.
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Above the resonance region, BS‘1 has a negative real! component

2
o

o’ B

it

Re (B])

- - 3o
o’ a? pL

- ___ 3u

kfa=BL (4-59)

When this is substituted in Equation (4-51}), the real component of the compliance
is negative in the frequency range o, < < o, , where , is the anti-resonance

frequency at which the real components of the two compliances cancel

Re (B]') = -B/*
w, = 1 —SQBL_._TIZ
CAl-
- L(Ba)‘/ZCL
A\l -a
- o, o BL Juz
(1-0) B (4-60)

The latter expression will be used in formulating wavenumbers. Since wave
motion requires an elastic restoring force, i.e., a positive bulk modulus, the
frequency range o, < ® < ®, constitutes a dead zone where pressure is attenuated
exponentially with distance. This will be discussed further in the subsection on
wavenumbers. At higher frequencies, © > ®w, , wave motion resumes. The three
frequency ranges are clearly revealed by experimental dispersion curves!4
(Figure 4-8). Substituting the parameter values corresponding to this test,
(B = 1.4x10% ubar, p, = lg/em?®, a = 0.2l cm, « = 5.3 x 103) Equa—
tion (4-56) yields the breathing mode natural frequency ./ 27 = 9.8 kHz and
Equation {4-60) the anti-fesonance frequency 87 kHz. Equation (4-57) vields a

low-frequency reciprocal bulk modulus

Bs'] = By = o/YP = 3.8x10° ybar!, (02<<w02. (4-61)
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The low-frequency sound velocity obtained from Equation (4-57) is c¢=1.6x
10% em/sec = 530 ft/sec. The results generated with the simple theory
developed above are seen to be in adequate agreement with measurements. The

attenuation will be evaluated in the last subsection which deals with wavenumbers.

A more realistic situation than cavities of uniform size is a bubble swarm
encompassing a random distribution of bubble radii, extending from a, to a; .

The bubble resonance spectrum is defined as
riw,) =dN/do,, (4-62)

where N is the number of cavities per unit volume. The spectrum r (©,) is the
number of these bubbles whose natural frequency falls within a bandwidth of
I rad/sec. The spectrum r has units time/Length3 . Referring to Equation (4-56},
this can be formnulated in terms of the cavity radius
dN - dN dao,
da dw, da (4-63)
or
dN da = r(w)d w.
da

This cavity size spectrum determines the fractional volume of cavities

a1
a = 4n | dN a345.
3 a da

(4-64)
Introducing the bubble natural frequency, Equation (4-56), to express a?®
aS = L (.3&)3/2
3 .
o P (4-65)

and substituting Equations (4-57) and (4-65) in Equation (4-64), one obtains an
expression for the fractional volume in terms of w,

w2
o = 22 (&)w T (o) d oy
EA N (4-66)



This can be expressed concisely in terms of the general moment of the number

spectrum, defined as!>

LAY | T
(o) = ﬁ-[ oy T {we) d wo . (4-67)

@)

Consequently, Equation (4-66) now becomes
a = 22 (Bs)m N (o)
PL
(4-68)
= 3.6 x 1010 (Pw/atm)®? N{w>) for air bubbles in water.

The sound velocity in Equation (4-51) can now be expressed explicitly for
statistical bubble size distributions. Since the density depends only on the frac-
tional volume of bubbles rather than on their size distribution and frequency, it is
convenient to formulate the results in terms of the reciprocal of the effective bulk

modulus. Referring to Equation (4-57) for the effect of resonance amplification:

Bl = (pc2)!

eff
. w2
= 1-a + 4]‘{(313(‘)1/2 I'((.l)o)d(ﬂo
BL Pi ©] (1)0(0)2-—0)2—i0)(1)0 8)

1_
AR . S (1)2<<(_1)21
B('

_ __i2r?r{(q,) 3B. |}/ <w <
= - (2] ea<a<e
=1-% @,
B, (4-69)

Finally, the anti-resonance frequency for a random distribution of bubble

sizes is

® =( aB, )1/2
2 (1-0d B,

g e

(4-70)



4.8.3 Pipe Resonances and Dead-Zone Attenuation in Two-Phase Systems

The solution developed in Section 4.1 formally holds for two-phase system,
it only being necessary to substitute the sound velocity, ¢, in Equation (4-51), and
the wavenumber k = w/c corresponding to the compliances in Equation (4-89).
An organ pipe-type resonance is only possible in the range where the compliance
is predominantly real, i.e., in the low-frequency range, ® < @, and the high-
frequency range, ® > w,. Consequently, resonances are not observed in the dead
zone ®,< ® <, , where sound is attenuated exponentially. The values of the
normalized real and imaginary component of the wavenumber of a two-phase
medium are summarized in Table 4-1 for a two-phase medium endowed with
cavities of uniform size. Extension to statistical cavity size distribution is
straightforward but cumbersome. The results will not be formulated here. As
already mentioned, meaningful resonances can only occur when k, »>k,, i.e., when
k. is independent of the damping constant 8. For these situations, rigid pipe
terminations correspond to the roots of cot (k, L), Equation (4-9}, and open-
ended pipe terminations to the zeroes of tan (k, L.y}, Equation (4-16). In other
words, the resonance frequencies obtained for the liquid-filled pipes
(Equation (4-12a) for the rigidly terminated pipe, Equation (4-17a) for the open-
ended pipe) are multiplied by the appropriate ratio K, /k,, Table 4-1.

The attenuation in the dead zone, w, < w < ®, is
A = 8.68k; dB/unit distance. (4-71)

Referring to Table 4-1 and to Equation (4-60), this becomes

A

8.68 (1 ~ ) Ya
CL
(4-72)

868 [3c(1-0]"*/a.

For the values of the parameters in Figure 4-8, e.g., 0 =5.3x103, a=7x 103 ft,

this yields 160 dB/ft. This result is only in mediocre agreement with the
measured attenuation of approximately 100 dB/ft. However, the predicted
attenuation is so large that one anticipates some short-circuiting of the fluid-borne

path by the structureborne path in the tube wall.



Table 4-1

Asymptotic Expressions for the Complex wavenumber (k, + 1 k)
of Sound Propagating Through a Swarm of Single-Size Gas-Filled or Vaporous Cavities

Frequency K, ky Bubble Propagation
Range "k Ky Behavior Characteristics
w? << w?,, Cavity
a k, o compressibility Slow, non-disperstve
w?, << 0?, ., (1-a)— % Za short-circuits negligibly attenuated
° L o compressibility of waves.
§ <<l liquid, bubble size
irrelevant.
Resistance-
l-2a ® k, controlled cavity Very highly
o= NTRUE — B admittance attenuated, slow
¢ ) %o L short-circuits waves.
compressibility
of liquid.
Mass-controlled
W, << & ko b (1-a W, cavity admittance Highly attenuated,
Kk 2w o short-circuits fast waves; dead
w? << W compressibility zone {or & = 0.
of liquid.
Sw \1/2 Mass-controlled High-pass cut-ofl
w= o, (1-a) (2 - ) K cavity admittance frequency:
©o k. cancels com- attenuated, fast
pressibility of liquid. waves.
W2 § Compressibility of Liquld-borme sound
w? >> 02, (1-o) (1-a) lquid short-circults diffracts around
20° highly mass-loaded effectively rigld
cavity pulsations. cavities.
W, aB, 172
o, LI(-0B

Q
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CHAPTER 5

STANDING WAVE MODES IN
PIPES AND DUCTS WITH MEAN FLOW

by John Cole I
Cambridge Acoustical Associates

The purpose of this chapter is to investigate the effect of flow on the
acoustic resonance in turbomachinery piping systems. Sound propagation in
pipes is influenced in a number of ways. Since various aspects of the flow affect
sound propagation, Section 5.1.1 begins by reviewing the effect of a sound
pressure propagating in a mean flow in the absence of the pipe. Wall effect and
the attenuation due to turbulence are then considered in Sections 5.1.2 and 5.1.3.
Section 5.2 considers the acoustic losses both in the interior and at the ends of a
finite length pipe. This section shows that the presence of the flow in the pipe
will reduce any amplification that may occur from axial resonance and the

damping effect will increase with Mach number.

5.1 Flow Effects on Sound Propagation

5.1.1 Mean Flow Effects — Convection

In linear acoustics, sound is a small disturbance or perturbation that
propagates through a fluid medium. If the fluid medium is flowing with a uniform
speed U (i.e., constant in both space and time), sound is carried or convected
along with the flow as it propagates. To a stationary observer (e.g., a wall-mounted
pressure sensor), the effect of the flow is to give a directionally dependent sound

propagation speed,
c(®) = c, (1 +Mcos6) (5-1)

where C, the sound speed in the fluid medium in the absence of flow,

M = U/c, is the flow Mach number, and

j==]
il

angle of propagation relative to the flow direction
(i.e., 8 = O is the direction of the flow).

The propagation speed "with" the flow is ¢o (1 + M), that "against" the flow
is ¢, (1 -M), and that "across" the flow is ¢, . Note that, in the following
discussion, we assume that ¢, is the sound speed of the ambient medium, which

when applied to pipes assumes that the pipe walls are rigid.

5-1



Because of the directionally dependent sound speed, the wavelength of a
propagating sinusoidal disturbance having frequency f (measured in hertz) also

depends on direction when measured by a stationary observer, that is,
A®) = c, {1l +Mcos8)/f (5-2)

We therefore express the sound pressure propagating as infinite plane waves in
the downstream (i.e., with the flow) and the upstream (i.e., against the flow)

directions respectively as:

prx) = p®=0,%x = Peilot+x x
(5-3)

P_(X) = p(e=1{,xj = P'ei[(&)t—k_x)’

where x increases in the flow direction,

k*=0& (1+M), and

km = 8 (1-M).

Co

These expressions represent waves propagating in the fundamental mode of a
rigid-walled pipe carrying a uniform flow of an inviscid fluid {i.e., a fluid that can

"slip” along the wall).

The acoustic pressure field satisfies the wave equation obtained by lineariz-
ing the equations of motion about the state of uniform flow.! Assuming flow in the

positive x direction, this requires changing the time derivative to

d d 0
— =2 | =+U =
dt (at dx (5-4a)
and gives the following momentum equation
d 3 9p
—+U—fu = - =X,
Plat ax) ax (5-4b)

Substitution of the expressions for downstream and upstream propagating waves
(Equation (5-3})) into the momentum equation (Equation (5-4(b)) provides the

following relationships between pressure and particle velocity:

+

P - pe,
u"’
(5-5)
P .
o -pC,



that is, the magnitude of the acoustic impedance of plane waves propagating in the
moving medium is equal to the characteristic impedance of the medium. (The
negative sign results from the assumption of positive velocity in the x direction.)

The root-mean-square acoustic intensity (i.e., energy per unit area) of waves
propagating in a uniformly moving medium is given in Reference 2. The intensity
of downstream and upstream propagating waves is

4|2
o= PF e m2,
(5-6)

1l

The "convective" wave equation that governs acoustic pressures measured
by a stationary observer in a uniformly moving medium is obtained by substituting
the convective time derivative (Equation (5-4a)) into the wave equation for a

stationary acoustic medium

1
52 ayz 572 C  gxat Czatz . (5-7)

(1—M2)@+§£+yp M PP

Solutions for Equation (5-7) are obtained by specifying a source configura-
tion at a boundary. Analytical solutions and measurements are given in Refer-
ence 3 for a source located in the wall of a pipe. In the absence of flow, the
boundary conditions posed by such a source are well defined. For a source that
vibrates with constant amplitude over a region of the wall, the same disturbance is
applied to the fluid in the duct, that is,

Wlo, r) = 20 (e, m) (5-8a)
where w = the radial wall velocity,
x, = the source region of the pipe wall,
r, = the pipe radius, and
1 = the source displacement.

The corresponding boundary condition in the presence of uniform flow requires
interpretation and empirical correlation. Direct application of Equation (5-4a) to
Equation {5-8a) gives the following result for the source velocity at the pipe wall in
the presence of uniform flow:

9 P
ot U 5_) M (X, s (5-8b)

W (X, Is) = ( "



Effectively this assumes that the flow over the source region is laminar and
that the normal velocity component merely displaces the streamlines. If, how-
ever, the flow in the source region is turbulent, the contributions to the spatial
portion of the derivative in Equation (5-8b) are uncorrelated and therefore tend to
cancel on average in this region. An approximate formulation of the boundary

condition is then the same as that for the duct with no flow (i.e., Equation(5-8a)).

Application of the two boundary conditions results in different flow depen-
dences of the acoustic pressures in the downstream and upstream directions. If
we consider only the fundamental propagation mode in a pipe whose walls are
rigid outside the source region, the ratios of downstream to upstream pressure

amplitudes corresponding to Equations (5-8a) and (5-8b) are, respectively,3

({11 + m Turbulent Flow - Equation (5-10a)
P (5-9)
n 2
p U+M . aminar Flow - Equation {5-10b)
(1-M)?

It is noted that convection of the sound field by the flow causes the
downstream pressure amplitude to be lower than the upstream amplitude. This
seems to be at variance with "common observation” associated with outdoor sound
propagation; however, as discussed in the next section, refraction, which often

dominates outdoor propagation, tends to reduce pressure amplitudes "upwind".

Comparison of the predictions of Equation (5-9} with measurements is
shown on Figure 5-1. The data are consistent with the "laminar" assumption at
Mach numbers below 0.1 and show a transition te the "turbulent” result above a

Mach number of approximately 0.2.

5.1.2 Wall Effects — Refraction

When discussing flows of real fluids in pipes, the presence of viscosity
makes the assumption of uniform flow invalid, especially near the walls. In the
simplest sense, the increase of flow velocity with distance with the wall means
that the effective propagation speed of sound also varies with distance from the
wall. Close to the wall where the flow speed is small (but outside the region of the
acoustic boundary layer, discussed in Section 4.4.), the sound propagation speed is
that of the fluid in the absence of flow. Near the centerline of the pipe, the
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Figure 5-1. Mach Number Dependence of the Measured Ratio | p-/P+|

Between the Pressure Amplitudes Radiated in the Upstream
and Downstream Directions.
(Reproduced from Ingard and Singhal.?)
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effective sound propagation speed is given by Equation (5-1). When sound
propagates with the flow, it therefore travels faster near the pipe center than it
does near the wall. If a plane wave of sound were to propagate in such a flow field,
it would tend to "bend"” or be refracted towards the wall. Conversely, a plane wave
propagating against the flow would propagate slower near the pipe center, and it

would tend to be refracted away from the wall.

The importance of refraction in pipe flow is generally smaller at low
frequency and for lower order propagation modes. There are no general analytical
results available for estimating the effects of refraction on propagation within
pipes. Results that do exist in the literature are obtained by numerical calculation
for specific parameters. A primary effect of refraction is to alter the attenuation
rate of waves propagating with and against the flow from those predicted using

the uniform flow assumption.

5.1.3 Aftenuation Due to Turbulent Flow

In the absence of flow, attenuation of sound propagating in the fundamental
mode in a circular pipe having rigid walls is due to irreversible processes
involving viscosity and heat conduction. This so-called "classical" attenuation

which is due to linear processes is given by*

o = 8.7pL, dB (5-10a)

pipe length,

where L
Bv = k [dv + (Y_ 1} dT]/Dp ]

k = w/c, = the acoustic wavenumber,
d, = V2v/w = the viscous boundary layer thickness,

dr = V2up/o = the thermal boundary layer thickness,
o = the coefficient of thermal diffusivity,
= the ratio of heat capacities (y = ¢,/c,). and

D, = 2r, = the pipe diameter.



For gases this attenuation is generally small. As an example, the classical
attenuation for air at standard temperature and pressure (v = 0.23 cm?/s,

o = 0.32 cm?/s) and a frequency of 1000 Hz is
o, = 0.02 L/D, dB, (5-10Db)
or approximately 1 dB per 50 diameters of pipe length.

When there is mean flow in a pipe, other mechanisms are present that
result in higher attenuation of sound. These mechanisms are viewed as being
"non-linear” and result either from the interaction of large amplitude sound waves
with the mean flow vorticity (i.e., dU/dy) or by the irreversible generation of

turbulence in the pipe.

A simple phenomenological formulation for this attenuation is derived in
Reference 5 by including in the momentum equation terms associated with the
steady-state pressure drop due to the presence of turbulent pipe flow. The result
is the following pair of complex-valued wavenumbers for propagation with and
against the flow

Ay

k* = 0 + i ,
coll + M} 1+M

(5-11)
- w _ A
Cn(l_M) I—M‘

where the loss factor Ay = B, + 2 yy M [1 + (R./2) (@ In y¢/9d RJ})/D, and yr is the
friction factor for turbulent flow at Reynolds number Re for steady pipe flow
(i.e., AP/L=vyrp fJZ/QDI, where AP is the static pressure drop along length L of
pipe). (Note that the friction factor for circular pipes vy is four times larger than
that defined in Reference 5 owing to the definition of equivalent diameter for

ducts of arbitrary cross-section.)

This formulation is shown in Reference 5 to be in reasonable agreement
with measurements. At high Reynolds numbers the friction factor becomes
independent of Re, and the attenuation due to turbulence is given by

- - 17yeM L
uh = B7AL = —F2—
O turt 8 AJ (liM) Dp (5«12)

where the positive and negative signs refer respectively to downstream and
upstream propagation. For relatively smooth pipes the friction factor is yy = 0.02,

and the attenuation given by Equation {5-12) exceeds the classical attenuation for
the conditions of Equation (5-10b) when M > 0.06.



5.2 Flow Effects on Resonances in Finite Pipe Lengths
5.2.1 Overview

The presence of flow in a pipe acts to reduce the amplification occurring at
the axial (i.e., "organ pipe") resonances that are found in the absence of flow. This
is observed in measurements of the sound pressure in a pipe shown on
Figures 5-2(a) and 5-2(b). In Figure 5-2(a), the sound source is external to the
pipe, and the results show decreasing resonance amplification with increasing
flow Mach number. The source of noise in Figure 5-2(b) is the flow through a pipe
having an unflanged sharp inlet and a flanged outlet. In this case the noise
increases as the flow Mach number increases; however, pipe resonances which

are apparent at M = 0.27 are nearly absent at M = 0.55.

Several factors contribute to the reduction of resonance amplification at
high flow Mach numbers. As discussed previously, the disparity of spatial wave-
numbers in the upstream and downstream directions means that there are fewer
opportunities for purely constructive or destructive interference of waves in the
pipe. Furthermore, additional attenuation mechanisms directly related to the flow
are present. One of these discussed previously is the interaction of the sound
wave with vorticity and turbulence within the pipe. Another dissipation
mechanism is the interaction of the sound wave with vorticity generated by the
flow entrance and exit. Although the basic physics of flow interaction with
vorticity is understood, quantitative results for specific flow geometries remain
empirical in nature. Available empirical results are therefore ‘presented next,

followed by analytical aspects.

5.2.2 Reflection Coefficient Measurements

The effect of flow on the pressure reflection coefficients (i.e., P-/P*, or the
reciprocal) at unflanged pipe ends for propagation upstream and downstream
from Reference 6 are shown on Figures 5-3(a) and 5-3(b). The dimensionless
frequencies (i.e., k r,) for these data range from 0.12 to 0.50 for the downstream
data and 0.36 to 0.50 for the upstream data. Little dependence on flow Mach
number is found for the downstream end (Figure 5-3b), while the reflection
coefficient at the upstream end shows a reasonably strong Mach number
dependence. The magnitude of the downstream and upstream reflection

coefficients, respectively, is approximated by 1 and [(1 - M)/{1 + M)]*33.
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(b) Noise Spectra Produced by Flow Through a Sharp-Edge Smooth
Circular Duct 12 Inches Long, With an Inner Diameter of 0.75 inch.

The Entrance End is Unflanged and the Exit End Flanged.

Figure 5-2. Measurements of Sound Pressure in a Pipe.
(Reproduced from Ingard and Singhal.®)
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Figure 5-3. Measured Mach Number Dependence of the Magnitude of the

Pressure Reflection Coefficients.

(Standing Wave Measurements: o- 1400 Hz; x - 1000 Hz; V - 350 Hz.
Pulse Measurements: A - 1200 Hz.) (Reproduced from Ingard and Singhal.6)




When flow is present, a pressure reflection coefficient of unity does not
imply total reflection without absorption. The relationship between pressure
reflection coefficient and acoustic intensity is obtained using Equation (5-6). By
substituting the above results for pressure reflection coefficients, we obtain the
following "energy” reflection coefficient at the downstream end

L= T S = (513

At the upstream end the corresponding result is

0.66

| - (Kr 1+MV = (I‘M
I P 1-M 1+M

(5-13b)

Acoustic energy is therefore absorbed by reflection at both ends; however, more
energy is dissipated at the downstream end. Although the measurements only
extend up to M = 0.5, extrapolation of these dependences confirm that anechoic

ends (i.e., no reflections) are obtained at sonic conditions (M = 1).

Flow restrictions at the downstream end of a pipe can be designed to
provide anechoic termination. Results are shown on Figure 5-4 for flow restric-
tions in the form of a single nozzle and a perforated plate. The energy reflection
coefficient has minima that approach zero when the exit flow Mach number (M,)
is approximately equal to the contraction ratio of the area (i.e., ratio of flow area of
the restriction to that of the pipe, this ratio being 0.132 for the results of
Figure 5-4). As indicated, this condition applies to low dimensionless frequency

and relatively low Mach numbers.

5.2.3 Analytical Modeling

Alteration by a flow of the acoustic characteristics of flow in a pipe can be
obtained using a simple analytical example, namely a pipe of length L carrying a
uniform flow with Mach number M. A disturbance at the downstream end
generates an equivalent plane wave velocity u, in the pipe. The wave propagating
upstream is assumed to reflect at the pipe end such that the pressure vanishes,
this being equivalent to an open pipe termination at low frequency. The acoustic
pressure field in the pipe is the sum of the waves propagating upstream and

downstream, that is,

px) = Pre'x 4 pretlx (5-14)
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where k* and k- are defined in Equation (5-3). We determine the ampli-
tudes P+ and P~ by requiring the particle velocity to be u, atx=0 and the total
pressure to be zero at the other end. As discussed in Section 4.3, an end
correction is applied to the physical length of the pipe to account for the
entrained fluid outside the pipe. For circular pipes carrying flow, the end

correction for an unflanged pipe is given bys-7

° T IR (5-15)

Using the effective length in the condition giving zero pressure, we obtain the

following retationships for the amplitudes

pr P -
o - PeUer (5-16)

pt ek’ lefl 4 P- e kff = Q.

These amplitudes are used to calculate the acoustic impedance at the

source location fi.e.. the ratio of pressure in the pipe to particle velocity at x = 0),

_pW _ -ipe (1 -M?) sin ke Lesr
Zo = T4 <=0 cos ke Ler+ 1 M sin ke Lot (5-17)
where k. = — @ is the convected wavenumber.
co(1 - M2)

In the absence of flow, the result given in Equation (4-14) is obtained in which the
source impedance is infinite (anti-resonance) when the pipe measures an odd
number of quarter wavelengths (i.e., the zeroes of cos kL) and zero (resonance)
when the pipe measures an integer number of half wavelengths. The effect of
uniform flow is to shift the location of the resonances and to eliminate the
possibility of pure anti-resonance in that there are no longer real-valued
frequencies that cause the denominator to vanish. Complex-valued frequency

roots of the denominator can be found, but these are effectively damped in time.

When the source is located in the wall of the pipe and reflections from
upstream and downstream ends are accounted for,® the function corresponding to

the denominator of Equation {5-17} is

1 - R, Ry el riilemr, (5-18)
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where the pressure reflection coefficients R, and Ry are shown on Figure 5-3.
Anti-resonances in the pipe are obtained at frequencies that are the roots of
Equation (5-18). As discussed above, these roots or eigenvalues are complex-
valued frequencies

0= @- 1'(;)‘ (5-19]

such that: exp (-iw t) = exp (-iw, t) exp (-, t). The real and imaginary parts of these
roots are given graphically on Figure 5-5 for various flow Mach numbers and
turbulent flow friction factors (i.e., Equation (5-11) is used for the wavenumbers).
Purely real roots giving zero particle velocity for a finite pressure are only obtained
when flow is absent. When the Mach number is 0.4, a propagating signal at the
eigenvalue in the absence of attenuation due to turbulence (W = O} is attenuated by

Giow = 8.7 LLLen = 87 (0.475) = 4 dB (5-20)

in the time, L. /c,, taken to travel the length of the pipe. The value 0.475 is
taken from Figure 5-5.

Analytical predictions of the absorption of sound through interaction with
flow vorticity have been made for several configurations {see References 7 to 10).
The physical understanding of this process is that dissipation is obtained when
sound interacts with the mean flow field to generate vorticity which is then swept
away by the flow. Tuning of this process to the flow and sound field results in the
anechoic termination (i.e., zero power reflection coefficient) shown on Figure 5-4.

1.0

w; Ly 0.5

1
M c

Figure 5-5. Mach Number Dependence of the (Complex) Eigenfrequency of the
m'th Axial Acoustic Mode (n =1, 2, , . ) of an Open-Ended Duct of
Effective Length L . for Several Values of the Turbulent Pipe Flow

Friction Factor, y,. (Reproduced from Ingard and Singhal.§)
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CHAPTER 6
ACOUSTIC RESONANCES IN CASCADES

by Louis C, Sutherland
Consultant in Acoustics

Cascades are defined as an array of parallel or annular plates in the plane of
flow of a gas or any compressible fluid - generally assumed to be subsonic. These
surfaces introduce fixed boundaries which can give rise to acoustic resonances.
The cascades can be considered as an idealized representation of stators in
hydraulic pumps or bends, guide vanes in bends. intake ports, etc. In contrast to
the well-known phenomenon of vortex shedding-induced vibration of structures
placed in a fluid flow of effectively infinite extent, the introduction of boundaries
within the fluid flow introduces a new element to this interaction of fluid flow and
structures. That is, the acoustic resonances that occur within these bounded
surfaces. It is often assumed that these acoustic resonances are, themselves, the
source of the structural excitation that frequently accompanies them. In fact,
Parker and Stoneman! have shown conclusively that the vortex shedding is still
the primary source of flow-induced vibrations in the presence of cascades.
However, the latter can have a strong influence on the strength of the resulting

aero-acoustic excitation. Particularly significant for this handbook can be:

e The vibration of blades in axial-flow compressors and other turbo-

machinery, and

s Noise and vibration from in-flow support spokes and corner vanes in
piping systems,

This chapter addresses these acoustic resonances from two aspects: (1) the
computation of their resonance frequencies and mode shapes, and (2) the general
impact of these acoustic resonances on the related aeroacoustic environment and
resulting structural responses. Emphasis is placed on the first aspect, which is
not readily available in practical engineering terms suitable for problem solving.
For the second aspect, only a brief review is attempted here since this fopic has
been thoroughly treated in the literature listed at the end of this chapter and has

been well summarized in a recent review paper.!



6.1 Geometry of Cascades

A typical rectangular cascade system is shown in Figure 6-1. It is treated as
an infinite stack of parallel plates with a cross-flow spanb and a chord
dimension C in the direction of flow separated by a pitch spacing s perpendicular
to the flow. The acoustic resonances of primary concern involve only the chord-
pitch plane and can thus be considered in terms of the acoustic resonance
frequencies of two-dimensional cavities. These resonances (as well as the three-
dimensional resonances which can occur} may also involve secondary interaction
with structural resonances of the cascade plates themselves. They are excited by
the fluctuating wakes shed by the flow at the trailing edge of the plates.

For cascade systems of the type shown in Figure 6-1, four characteristic
types of acoustic modes can be defined. They are designated, after Parker,? as the
o, B, v, and & modes which have the general modal pattern illustrated in Figure 6-2.
The first two types of modes {0 and B) have a pressure anti-node (region of high
pressure) along the mid-pitch plane halfway between each pair of plates and are
distinguished by either a pressure node (region of zero or minimum pressure)
along the mid-chord plane (¢ mode) or an anti-node along this plane (} mode).
The other two modes shown in Figure 6-2 have in common a pressure node along
the mid-pitch plane but are distinguished by either a pressure node along the
mid-chord plane (y mode) or an anti-node along this plane (6 mode). The
significance of these acoustic resonances is that, when they are excited by vortex
shedding, the resulting acoustic pressures may cause unacceptably high vibration
responses of adjacent structure or generate very high noise levels. This occurs
when the acoustic resonances frequencies are close to the vortex shedding
frequency, which varies with flow velocity. However, as will be illustrated later,
the vortex shedding frequency itself may change significantly as the sound

pressures of the acoustic field interact with the vortex shedding process.



Side Walls

Figure 6-1. Illustration of Cascade System.
(Reproduced from Parker.?)




i

?ﬂ//m ¢
D

\\\\\\\\\\\\\\ i ?////////4/////

Z X

(a) Principal Two-Dimensional Modes - Node at Mid-Chord (Mode o).

T

- — ———— e il Wty i

%%%%wé%%%%%%%%&jr—w
D

wwmww§§§mwwx\w~

— e e i — e e — i — — —

|
xwwxxﬂklkawwwm\

\\\\\\\\\\\Q. 7/////////////, %%

{c} Higher-Order Two-Dimensional Modes - (Mode 7).

—— s b ——— —— A S S (e S— —— —

1<

— e ——— —— —r —r—

D

T T T I IONANSE

(d) Higher-Order Two-Dimensional Modes — Node at Mid-Chord (Mode 8).

=— Plates — — — Pressure Nodes / / / / Regions of High SPL Velocity Nodes

Figure 6-2. Mode Shapes for the Cascade System in Figure 6-1.
(Reproduced from Parker.2)
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6.2 Relaxation Method -

This section provides a method of determining the acoustic resonance
frequency in cascades using a numerical "relaxation” method. The technique is
able to compute resonance frequency and mode shapes for complex geometries,

as in turbomachinery cascades.

The relaxation method was originally developed to solve mechanical
stability problems in structural framework systems. "the method of systematic
relaxation of constraints" (Allen3). The method provides a mathematically
forgiving process for simultaneously solving a set of N linear equations in
N unknowns. The relaxation process does not réally operate on the equations
themselves but uses them only to define "residual error terms” — analogous to the
residual constraint forces applied to the framework - which are "relaxed” or

gradually reduced to zero by a simple iterative process.

For example, assume the acoustic mode shape in a system is describ . by a
set of N linear equations in X; which can be expressed in the follow.ag form,

where the indices i and j both go from 1 to N:

ji—
i a, X, + apX + ... apXy = B,
\ ay X, + apX + ... auX =B (6-1)
ay X, + ap X+ ... awy Xy = By

The solution to this set of equations is reached when a specific set of values of X,
satisfies the above expressions. A solution to any one of the equations in the above

set is also reached when there is no longer any residual error in the equality

between the left and right sides of the equation. This is the key concept of the

relaxation_process.

That is, for this process, the same "solution” to Equation (6-1) is reached
for the set of X; for which all of the residual errors, F, expressed in the following

form, approach zero:

j—
i F, = a,X;+a,X% +...anX-B
A F, = a,X, +8,% +...anX-B, (6-2)
Fy = apX, + ap X, + sy Xy~ By



In other words, when the correct values of X, are substituted into Equation (6-1),
the right and left sides of Equation (6-1) become equal. Correspondingly, in
Equation (6-2), the values of the residual errors, Fj, approach zero when the
values of X, approach (within acceptable accuracy) the correct values for the mode

shape that would have been obtained from the exact solution of Equation (6-1).

Basically, the relaxation process starts by breaking an acoustic cavity down
into finite elements and approximating the applicable Helmholtz equation for the
cavity by finite difference equations which also define a set of residual error
terms. F,. Then values are assumed for the unknowns, X;, in these equations.
Depending on which of the two basic versions of the relaxation method is
employed. these initial values for the desired unknown mode shapes may. in
general, be quite arbitrary, or may be very rough estimates of the actual mode
shape. However, in either case, any initial values at the cavity boundaries must
conform to applicable boundary conditions such as zero particle velocity at a rigid

wall or zero pressure at an assumed pressure node.

Next. the residual error terms. F; from Equation (6-2) are computed and,
from these, incremental changes 8X, to one or more of the assumed X; values are
computed. These increments are computed so as to reduce the magnitude of the
residual errors. The new values of X, X (new) = X; (initial) + 8X, , are then used to
compute new values for the residual error terms. The process is repeated or
iterated until the residual error terms, F, approach zero and the iterated values
for the mode shape, X, , stabilize. This final close approximation to the mode

shape is then used to compute the desired resonance frequency.

Accuracies in mode shape of the order of 5 to 10 percent and roughly
tenfold higher accuracies in resonance frequency are possible with a relatively
small number of iterations readily carried out on a computer. The number of
iterations will decrease as the initially estimated mode shape more closely
approximates the correct value and will increase as the number, N, of variables
increases, where N is equal to the number of two- or three-dimensional cells or

elements used to describe the acoustic cavity or cascade system.
Several variations in the iterative relaxation process can be used:

* Point Relaxation - Iterative change in one element at a time (i.e., a
change in one variable, say X|) selected for change because it had the



highest residual error at the end of the previous iteration. The change
in X, is computed so as to reduce the residual error F; to zero for the

next iteration.

Block Relaxation - Equal iterative changes in a block of elements (e.g., all
N variables in a set of equations for the pressure in a cavity are changed
by the same amount designed to reduce the total residual error (LF) to

zero at the next iteration).

Group Relaxation - Unequal iterative changes in a block of elements
{e.g.. all variables in a set of equations are changed simultaneously but by
uneqgual amounts).

Multiplying Factors - A single multiplier applied to all of the residual
error terms, F,, at the same time when the iteration process has

reached the point where they are all non-zero but have the same relative
proportion (i.e., F, : F,. F,:F, etc) that they have at the beginning of the

iteration process. If the estimated values for X; are all multiplied by this

definable factor, a final solution is achieved in just one more itera-

tion step.

In addition to these four variations for relaxation iteration defined by Allen,® a

variation on point relaxation is useful for efficient computer implementation of the

relaxation process.

Multiple Point Relaxation - This consists of applying an incremental
change to all points for which the previous residual error was equal to or
greater than a specified fraction {25 percent has been found to be suit-
able) of the maximum residual error. That is, a defined incremental
change (not the same for each point) is made to all points with a
residual error within 25 to 100 percent of the maximum value. The
incremental change made to each such point is the same as for a true
single point relaxation, i.e.. it will reduce the residual error to zero for
that point in the next iteration, in the absence of changes to any

other points.

For efficient computerized execution of the relaxation method, only the Point,

Block, and Multiple Point relaxation techniques are appropriate. The other two

variations require more complex judgment, not suitable for a simple computerized

iteration program.



Consider, now, some of the key aspects involved in the application of the
relaxation process to the determination of the fundamental acoustic resonance
frequency and mode shape for a simple one-dimensional acoustic system. While
these parameters can be readily defined by classical methods, for this example the

relaxation method is applied to this case for illustration of these key concepts.

Consider the sound field inside a closed rigid tube of length L. The spatial
variation in the sinusoidally varying ({time-wise) pressure in the tube is found from
the solution of an ordinary, second-order, differential equation, called the
Helmholtz equation. If the axial position along the tube is expressed in a non-
dimensional form as the ratio x'=x/L of the x coordinate to the tube length L,
the Helmholtz equation can be given by#*

d? P x)
dx

+ (KLY Pix) = O, (6-3)

where k = 2rnf/c is the wave number for a sinusocidal pressure wave with a

frequency f and sound speed c.

Equation (6-3) is one form of a general class of equations which define
eigenvalues or resonance frequencies of a linear {in this case, one-dimensional)

system in terms of a set of normal modes. In this case, the acoustic pressure in

the closed tube for one of these resonance frequencies, say the n'th, will have the

general form
p, (x.t) = P.(x') cos 2n f t), (6-4)

where P (x') is the, as yet undefined, mode shape for the n'th mode at point x'
and f  is the n'th resonance frequency, related to the corresponding wave
number by k, =2nf /c. To determine this resonance frequency by the relaxation
method, either one of two variations may be used: (1} the "Modal Intensification”
method, or (2} the Rayleigh method. These variations, explained in more detail
in Section 6.2.5, are summarized here with emphasis on the Modal Intensifica-

tion method.

Consider, now in Section 6.2.1, the key element common to both of these
approaches, the Rayleigh quotient, which is used to compute the resonance

frequencies.
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6.2.1 Ravleigh Quotient

The Rayleigh quotient can be developed, semi-empirically, by recognizing
that a general solution to Equation (6-3} should apply at all values of x' within a
system (e.g., all along the axis of the closed tube in our example). Thus integration
of both parts of Equation {6-3) is implied. Further, assume that the magnitude of
each term in Equation (6-3) at any position should be weighted by the magnitude
of the pressure P(x'} at that position. Applying these concepts, and solving the
weighted integral version of Equation (6-3) for the eigenvalue (kL)2 , the Rayleigh

quotient is given by3

Je) (P Px)/dx?)dx
| P2 (x) dx’

2
(L™ = (6-5)

where it is understood that the integrations take place over all values of X’ from

one end of the tube to the other (i.e., X' = 0 to 1, where x' is non-dimensional).

The application of the Rayleigh quotient involves an intuitive guess at the
expected mode shape, followed by an evaluation of Equation (6-5) to obtain an
estimate of the eigenvalue. This method will yield the eigenvalue to a high degree

of accuracy.

To apply Equation (6-5) to one of the following relaxation methods, it is
first necessary to develop a finite difference approximation (FDA) to the second
derivative of P(x) in the numerator of this equation. For the simple example
used here of the closed end tube. this FDA is started by breaking the tube into a
set of four equal segments, as illustrated in the following sketch. (Only four

segments are used here, for the sake of simplicity.)

Dropping the prime from x' for convenience, the FDA to Equation (6-3) at
the point x, can be shown to be?

d®Plx) Pl + Phan) -2 P(x:)
dx? h? (6-6)

where P{x,) are the values for the acoustic pressure P(x) along the x axis at
positions x,_,, X,, and x,,, spaced at equal intervals, h, as illustrated in the sketch,
where i has the values O to 4. Equation (6-6) is simply the first term of a central
difference approximation of the second derivative of P(x) with error of order h?.
The central difference approximation was derived from the sum of the Taylor

series expansion of P(x; - h) and P(x; + h).
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Applying this approximation for d? P{x,)/dx?, and replacing the continuous
integral of Equation (6-5) with a summation over the finite elements, an equiva-

lent form of Equation (6-5) suitable for numerical computation is

4
=¥ Plxg [ Plxi1) + Plxia) ~ 2P(x) ]
(kL)? = - =0
4 : (6-7)
Y Pxy)

=0

Note that, since the x-coordinates are actually expressed in non-dimensional
form, the variable, h, is also non-dimensional and, in this case, is simply equal
to 1/4, or the inverse of the number of segments into which the tube length has
been divided.

6.2.2 Modal Intensification Method

For this method, the pressure at any point in the cavity is expressed as the
sum of the pressures in the n normal modes for the cavity. This normal mode
summation concept is then applied, with the aid of the relaxation process, to find
the shape of the first normal mode of the system and then, with the aid of the

Rayleigh quotient, to find the corresponding resonance frequency.

If desired, the method can be applied to find higher-order modes by
utilizing the orthogonality property of normal modes and "sweeping out" the
already determined first mode shape from the initially assumed mode shape for
the second mode and so on for higher modes.® Modal Intensification is the
principal method utilized for previous studies of acoustic resonances of cascades
(e.g., Parker?). It has the advantage of always finding the lowest order mode and it
is computationally simple to use because it requires only a succession of solutions

to a set of linear algebraic equations.

6.2.3 Rayleigh Method

For this method, the Rayleigh quotient is first applied to estimate the
fundamental resonance frequency (in terms of the non-dimensional parameter
{( (k, L)?) based on an initial rough estimate of the approximate fundamental mode
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shape of the system. This first approximation to (k, L)? is then used to compute
the residual errors for this initial estimate of the mode shape. From these values,
refined estimates of the mode shape are derived. The process is then repeated

until the resonance frequency and mode shape stabilize.

The Rayleigh method suffers by giving no indication which of the n modes
of a solution is obtained. The method does not deliberately arrange computation
of the modes so that the lowest order mode is always selected first. Another
difficulty occurs when two of the eigenvalues are close together or nearly equal.
Convergence to one of the modes may be practically impossible unless a
sufficiently good first guess is made. The Modal Intensification method does not

suffer from these defects, and is therefore the method of choice.

6.2.4 Implementation of the Modal Intensification Relaxation Method

This section contains a generalized application of the Modal Intensification
relaxation method to a simple one-dimensional case. Section 6.2.5.1 provides a
detailed example of the computation of the mode shape and resonance frequency

of fluid in a pipe with closed ends.

As indicated earlier, this method assumes that the pressure P(x} at any
pésition x can be expressed as the sum of the pressures in the normal modes,
P,(x), Polx), .. .. P.(x) . with resonance frequencies/eigenvalues represented, for
convenience, by the non-dimensional eigenvalue B, = (kL) . From this concept, it
can be shown3 that the Helmholtz equation takes the form (again dropping the

prime from x')
d? P'(x)

+ Px) = O
dx? (6-8)
: P1{x) Pa(x) Pa(x)

Px) = + + ... 4 - )
where B; B By (6-9a)
and the eigenvalues for the n modes have ascending values such that

Br<PBa<PBa<...pPn- (6-9b)

The variable P' now becomes the unknown sum of the modal amplitudes to
be found in terms of the presumed known total amplitude P{x). Equation (6-8) is
solved for P'(x) by relaxation and this solution is substituted back into Equa-
tion (6-8) as a better estimate of P(x). This process is then repeated several



times. Given the relationships in Equation {6-9), the result is that this iteration
process stabilizes on the amplitude of the lowest mode since, in the series
P (x)/B, + Po(x) /B, + . . . Pu(x)/B, . the first term for the fundamental mode will be

"intensified” at each step in the iteration process.

Now, using Equation (6-6) to express Equation (6-8)} in terms of an FDA for
the point i= 0, the result is

P'(x ) + P'{x;) - 2 P'(xo)

=i + Plxg) = 0. (6-10)

Since the actual amplitudes, P'(x;). of the normal modes are not of importance
here, the value of h can be arbitrarily set equal to 1 at this point. Therefore the
corresponding residual error term F,, representing the equivalent of Equa-

tion (6-2) at the point i=20, is
Fo = [Px.) + Plx) - 2PMx)] + Plxo). (6-11)
Similarly, the residual error term F,, at the point i=1 is

F, = [P(x) + Px,) - 2P(x;)] + Plx,). (6-12)

It is immediately apparent from these two equations that a unit change in P'(x,)

will change the residual error terms Fy and F, by -2 and +1, respectively.

It is desirable, at this point, to define the boundary conditions applicable for
a closed-end tube. The boundary condition for the first mode is a zero particle
velocity at the ends of the tube. This is equivalent to saying that dP(x)/dx=0 at
each end of the tube. However, the finite difference approximation for this first
derivative at a point x, is simply

dP(x) - Plx+1) - P{xi1}
dx 2h

= 0. (6-13)

The boundary condition of zero particle velocity at x, leads to
P(x., = Plx),

where P(x,,,) are the pressures on each side of the i'th point at positions

separated by a total distance 2h.

Thus the boundary condition at a rigid surface located at, say, x = %, , is

simulated, for calculation purposes in the relaxation process by establishing a



fictitious point on the other side of the boundary at x, which has the same
pressure as at point x,, . All that is necessary is to carry this point through the
relaxation process solely for purposes of conveniently computing the residual

error terms.

It is convenient to facilitate, conceptually, the computation of the residual
error terms, as in Equation (6-12), by what is called an operations table. This is
shown in Table 6-1, below, for the case of the simple closed-end tube divided into
four segments. This shows the change in the value of F, at each i'th point for a unit
change in the pressure at this point only and for a unit change in pressure at all

the points simultaneously.

Table 6-1

Operation Table for the Analysis of
Fundamental Acoustic Mode of Closed-End Pipe

| SEGMENTS
0 1 2 3 4
Residual Errors, F,

3 P(i) Fi'| Fo F, Fy Fa Fy, | Fs®
PO =1 1 -2 1
P{O) =1 1 -2 1
P'(0) = 1 1 2 1
P0} =1 1 -2 1
P'(0) = 1 1 -2 1
AN P{i)* -1 0 0 0 -1

* Fictitious point outside ends of closed tube.
*+ Sum of F, for P\, =1 atall points = -2.



6.2.5 Example Calculation of a String With Fixed Ends

6.2.5.1 Modal Intensification Relaxation Method
The Helmholtz equation for vibration of a string of linear mass density p ,
length L, under tension T is given by?

d? wix')

gz kL2 wix') = 0, (6-14)

where the wave number k = 2xf/c, the speed of wave motion in the string ¢ =
\f'ITp . and w(x') is the displacement of the string at a non-dimensional axial
position x'=x/L from a rest position. This can be transformed into the following
form by applying the principle of construction of any vibration pattern for the
string as the sum of its normal modes.® For this approach, a new variable w' is
defined as the sum of these normal modes, each having an eigenvalue B, = (k, L)?
where B, < B, < B;. etc. Thus, if w isequalto A, w, + A, wo +... + A, w,, where
A, is the modal amplitude of the i'th mode with shape w, Equation (6-14) could be

written, dropping the prime from x', as
T + w = 0, {(6-15)

where w' = w1, Azws o Agwp
BI & Bn

Now, since B, < B, < By, etc., the first term of this series will be the largest
for constant modal amplitude A, ., so that solving Equation (6-15) for w, for a
given {estimated) value of w will provide an intensified estimate of the shape w, of
the first mode of vibration of the string. Successive iterations of this solution
for w, as an improved estimate for w finally produces an accurate estimate for

the fundamental mode of vibration of the string.

To solve Equation (6-15) by this version of the relaxation method, it is first
transformed by a finite difference approximation for the second derivative into the
following form for the i'th point:

W o+ W, - 2w,

h2 + W = 0‘ (6‘16}

where h = the length of each finite segment into which the string is divided. For
now, the value of h can be arbitrarily set to 1, since the absolute magnitude of the

modal amplitude is not of interest.



Equation (6-16) is now solved for the unknown w’ values using alternating
block and point relaxation processes. Application of these processes to the
determination of the mode shape and fundamental resonance frequency for
vibration of a fixed-end string of length L is illustrated as follows. First, the
string is broken into four finite segments as illustrated in the diagram below,
where h=1/4:

x/L = 0.25 Q0.5 0.75 1.0
w W'y W'y
WO =O W4 =0
(fixed end) (fixed end)

The displacements at the two end points are, of course, zero. Applying Equa-
tion (6-16) for each of the remaining three intermediate points (i = 1,2,3), the
expressions for the residual error at these three points, are (with h set equal
to 1):

F, = - 2w + wj + W, - (6-17a)
F, = + W, -2w, + W3 +W; (6-17h)
F; = wy - 2W'3 +ws. (6-17c¢)

It is helpful, when applying the relaxation process to define the following
operations table which simply defines the change in the value of each of the
residual error terms for a unit increase in each of the unknowns w'(i} one at a
time (lines 1, 2, and 3, below) and (for application to block operations), all at the

same time (line 4, below).

Table 6-2

Operations Table for the Analysis of
Fundamental; Displacement Modes of a Vibrating String

_ Residual Errors, Fli)
Line dw, F, F, F,
1 w, = 1 -2 1 0
2 w, = 1 -2 1
3 wy =1 0 1 -2
4 |wy=wy=wy = 1] -1 0 -1 |S R v, = 1] =-2




In Table 6-2, the values -2, 1, and 0 appearing under F, are the coefficients
to the W primes in Equation (6-17a). The value of w, is arbitrarily assumed to be
100 initially and, for each step. the first values of w',, the modal component of w;,
to be determined, are set to 0. As can be seen from Equation (6-17), the result is
that the initial values of the residual error terms, F,, are also equal to 100. The
most efficient way to start the relaxation process is to first apply a block
relaxation. This consists of applying a change, 3w, to each w, selected such that
the sum of the resulting residual error terms is zero. It can be shown that this
value of &w’, is given by:

-2 (F)

1 = EF’. (er=1) (6‘18)

ow'
where F, are the actual error terms for specified values of w',, and F, (W' =1)

are the error terms for a unit change in w', at each point.

From Table 6-2, 8w', is equal to —(100 + 100 + 100)/(-1 + 0 - 1) = 150. With
this change to W', new values for F, are then calculated. As shown in Table 6-3,

line 1d the sum of the residual error values of F,(-50 + 100 - 50} is equal to 0.

For Step 2 of the relaxation process for this case, it is most efficient to
simply apply a point relaxation operation. This method is usually reserved until
the end of the solution in order to make small local adjustments. Point Relaxation
amounts to adding a new increment dw', to only the value of w', which had the
largest residual error from the previous step. The magnitude of this change is
found from the operations table and is set equal to the value necessary to make
this (largest) residual error equal to 0. For value i =2, which has the largest
residual error at the end of the first part of Step 1, changing w', by -100/
(-2) = 50 will accomplish this. The other w's are not changed but the resulting
new value for the residual errors are zero at point 2, as required, and,
by coincidence, the residual error is also zero at the other two points at the end
of Step 2.
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Table 6-3

Relaxation Table Showing Steps 1 and 2 for
Displacement Modes of Vibrating String

i=1 l=2 i=3

Line - . . .
la F, = w, (initial) 00 | 100 1 100 Initial Estimate for w,
Ib W, 150 | 150 | 150 } BrOCK RELAXATION
le w 150 | 150 | 150

| dw' applied at all points]
1d | F|, Eq.(6-17) | .50 | 100 | -50

2b dw 0 50 0 POINT RELAXATION

2c Wi 150 | 200 | 150 | |5y applied only where
2d F', Eq.(6-17) 0 0 0 previous F| is max |

The operations carried out in Table 6-3 are:
Line la Initially, assume w;=100 and W' =0; hence, from Equa-
tion (6-17), F,=w,.
Line 1b &w', computed from Equation (6-18), applied for block relaxation
at all non-fixed points.
Line lc  w', = w' (initial) + éw', = 0 + dw', .
Line 1d New values for F; computed from Equation (6-17).

Line 2b &w’, computed again from Equation (6-18) with new values of Fj.
Line 2¢ w, = w'(new) + éw',
Line 2d New values for F, computed from Equation (6-17).

The new estimates of the modal amplitudes w', are now used to revise the initial
value of w, which starts another iteration loop carrying out these same series

of steps.

Before proceeding to the next step, it is convenient to normalize the new
values of w'j and wj to a maximum of 100 (see Table 6-4, line 3a). The entire
process is now repeated, starting with a block relaxation change &w', to all three
points which is, from Equation (6-18), equal to -(75 + 100 + 75)/(-2) = 125.
Again note that the initial value of W' is assumed equal to zero for the first
iteration of each step, so the second estimate of w' (line 3¢) is simply equal to

8w, on line 3b.



Table 6-4

Relaxation Table Showing Steps 3 and 4 for
Displacement Modes of Vibrating String

Léne F, = w, (initial) i=1)i=2]i=3 Initial Estimate for w,
a 75 100 75
3b dw, 125 125 125 BLOCK RELAXATION
3c W' 125 | 125 | 125 )
3d F -50 100 -50
ab 5w, 0 | 50 | 0 | POINT RELAXATION
4c W, 125 | 175 | 125 l
4d F, o | 0| o

The same procedure repeated again gives the following result. Again, note
that it is purely coincidence, for this simple case, that all of the values of F, on
line 4d are zero. Only the value for i=2 is expected to be zero by application of

the point relaxation at this point.

Table 6-5

Relaxation Table Showing Steps 5 and 6 for
Displacement Modes of Vibrating String

Line w, (initial) i=1 i=2 i=3 Normalized From Line 4c¢
5a ! 71.43 100 | 71.43

5b dw 121.4 { 121.4 | 121.4 BLOCK RELAXATION
5c w 121.4 | 121.4 | 121.4 I

5d F, -46.4 100.0 | -46.4

&b & w, 0 50.0 0 POINT RELAXATION
6c w 121.4 | 171.4 | 121.4

6db F' 0 0 0

After three more identical iterations of the same process (see Tables 6-5
and 6-6}, the resulting mode shape, expressed in a normalized form, is identical
to five significant figures to the theoretical result given in Table 6-6. Note, how-
ever, that in this case, just two iterations are all that would be required to achieve

an accuracy of about 1 percent in mode shape (i.e., compare the normalized mode



shape, 0:71.43:100:71.43:0 at the beginning of Step 5 with the exact values
0:70.711:100:70.711:0) for the first (sinusoidal) mode of a vibrating string. Thus a
very accurate solution has been obtained for the fundamental mode shape w, of

the string by this simple relaxation process.

Table 6-6

Relaxation Table Showing Steps 7 and 8 for
Displacement Modes of Vibrating String

Line w, (initial i=1 i=1 i=1
7a 70.7 100 | 70.7
7b 3w, 120.7 | 120.7 | 120.7 BLOCK RELAXATION
7c w 120.7 | 120.7 | 120.7 ]
7d F' -50.0 | 100.0 -50
8b dw, 0 50.0 0 POINT RELAXATION
8c w 120.7 | 170.7 | 120.7 1
8d F 0 0 0
Table 6-7
Normalized Values From Line 8c and Exact Values
Line ' i=1 i=1 i=1
9a b 70.711 | 100 [70.711
Exact Values From Theory, w', = 100 sin (mx/L)
W' 70.711( 100 [70.711

All that remains is to define the fundamental resonance frequency from this
relaxation process. From the Rayleigh quotient, the value of (k; L)* is given by3

- T {d? wi/dx?) dx
[ w2(x) dx

(k; L)® =

(6-19)

where it is understood that the integration takes place over all values of x from

one end of the string to the other.



Using the finite difference approximation for the second derivative in the
top integral and now using the true non-dimensional value of h=1/4 (it was

arbitrary when computing relative mode shapes)

(kl L]2 = _ Zw (wl—l + Wil — 2W1)
h? Zwi (6-20)
Applying this to the normalized values for w', at the end of Step 2, the result is

_ -I71.43 (100 - 2x71.43) + 100 (71.43 + 71.43 - 2x100) + 71.43 (100 - 2x71.43)]
(1/4)2[(71.43)? + (100)% + {71.43)?]

(ky LY

9.374

n

or k,L = 3.062, within 2.5 percent of the true value, =, for the fundamental

mode of vibration of a fixed-fixed string.

In summary, with no knowledge whatsoever of the mode shape of the stiring

except for the required boundary condition of zero displacement at the ends of
the string (i.e., the initial guess was for a constant amplitude of 100) and using
only the finite difference approximation to the Helmholtz equation for the
vibration of the string, the mode shape for its fundamental frequency of vibration
is easily computed by the Modal Intensification relaxation method. A close
approximation to the resonance frequency is then computed from another finite
difference approximation to the Rayleigh quotient. Note that if the more exact
estimate of the mode shape had been used after Step 7, instead of two iterations
of the relaxation process, then the calculated resonance frequency, from Equa-
tion (6-20) would have had a value for kL of 3.061, just slightly lower than the first

estimate.

If the string had been broken into eight, instead of four, segments, the
above process would have produced a value for k; L of 3.12, within less than
1 percent of the true value = (Allen3). Thus, in general, improved estimates of
the resonance frequency of a system require a finer breakdown into more
elements — that is, accuracy for modal frequencies is more dependent upon a finer
segmentation for the Rayleigh quotient than on the accuracy of the mode shape

determined from the relaxation process.

This highly simplified demonstration of the application of the modal

intensification relaxation method to find the fundamental mode shape and



resonance frequency of vibration of a string can be directly applied to the case of
the acoustic resonance in an open-ended pipe. This analogy neglects the end
correction of a virtual "acoustic” mass at the ends of the open pipe which accounts
for sound radiation at the ends {Kinsler and Frey?). The string displacement w is
replaced by the acoustic pressure, P, and the speed ¢ =vT/p of vibration waves in
the string is replaced by the speed of sound c¢ =yP,/p ., where ¥y is the ratio of
specific heats, P, is the atmospheric pressure, and p is the gas density. In all
cases, the relaxation process is carried out by successive applications of the
incremental changes, &w,, defined by Equation (6-18), to one or more points in
the system such that, in each case, the sum of the residual errors for all the points

changed is zero.

6.2.5.2 Rayleigh Relaxation Method

For this method, the finite difference approximation to the Helmholtz
equation can be written down directly without resort to any assumption about
normal mode summation. The resulting Finite Difference approximation to
Equation (6-14) at the i'th point is

[wiy +w i -2w) /h?+ KLPw, = 0, (6-21)
where h equals the length of each segment of the string.

The corresponding expression for the residual error, F; is, for the i'th point:

F, = Wiy + Wi - W [2 - (Lh?] w,. (6-22)
Note that, unlike the modal intensification method, the residual error terms
inherently include the eigenfrequency term (kLh)?®.
The Rayleigh relaxation method is carried out as follows:

1. An initial estimate is made of the values of w, defining the shape of the

fundamental mode.

2. A value for the quantity (kLh)® is calculated from the Rayleigh quotient,
Equation (6-20), using these values of w;.

3. A value for the residual error, F,, at each point is calculated from Equa-
tion (6-22}.



4. An incremental change 8w, is computed to initiate a block or point
relaxation step. The value of dwj is again found from Equation (6-18)
and is equal to minus one times the total or maximum value of the
residual errors terms for a block or point relaxation step, respectively,
divided by the corresponding total value of the residual error for a unit
change in w, at the point(s) affected.

5. The value(s) of 8w, is then applied as a correction to the corresponding

previous values of w, to obtain a refined estimate of w,.

6. This process is repeated from Step 2 through Step 5 until the computed
eigenvalue (kl.) and mode shape become stable, i.e., the change in these

quantities between iterations is within the accepted accuracy criteria.

The process is illustrated as follows for the case of the string. Unlike the
beginning of the modal intensification method where the initial mode shape was
not critical, now it may be necessary that the initial estimate of the mode shape
be at least a reasonable, first-order approximation to the actual mode shape of the
Jundamental mode. That is, the initial estimate should roughly indicate the
general location of the maxima and must, of course, be consistent with the
boundary or mode conditions such as a zero displacement at a boundary or at a
known or assumed node point or line. For this case, an initial crude estimate of
the mode shape is given by 0:60:100:60:0.

In Table 6-8, two different versions of the relaxation process are applied to
illustrate the potential flexibility of the method. For the first approach,
Equation (6-22) is used throughout for calculation of the residual error terms, F,,
and the change. &w,, to be made to extinguish these errors using the block
relaxation process. For the second variation, Equation (6-22} is only used to
compute the error terms and a simplified version of Equation (6-18) is used to
compute the change &w, made to each point to minimize F, using, initially, a
block relaxation process and the point relaxation method thereafter. The simpli-
fication consists of setting (kLh) equal to zero when computing the change in F,
for a unit change in w, (Allen3). For the sake of brevity, only the first two steps
and the last step required to achieve good accuracy are shown for each of these

two variations.



Table 6-8

Rayleigh Relaxation Table for First Mode of Fixed-Fixed String

(a) Using exact expression for F| and 3w, for all (block relation) steps.

STEP X/L >> 1 2 3 (kLh)? | Sum [F]] |Sum [F, w, = 1]

OF, w =1, Eq.(6-22}# | -04 0.6 -0.4 -0.186 Type
0 w,(0}. Initial 60 100 60 0.6046 of
0 F, Eq.(6-22) 16.3 | -19.5 16.3 13.023 Step
1 3 w,. Eq.{6-18) 70.0 70.0 70.0 Block
1 w,(0) + 3w, 130.0 | 170.0 | 130.0

1 w (n)* 76.5 | 100.0 | 76.5 | 0.5901

1 F,.Eq.(6-22) 7.8 | 120 7.8 -3.678 -0.230

2 3w, Eq.[6-18) 16.0 | -16.0 16.0 Block
2 w,(1} + Bw, 60.5 84.0 60.5

2 w (n) * 72.0 | 1000 | 72.0 | 0.5860

2  F,.Eq.(6-22) -1.8 2.6 -1.8 -1.000 -0.2420

L] » ] [ ) [ ] . L ]

L ] L] L * L L] L 2

4 3w, Eq(6-18) -0.22 | -0.22 -0.22 Block
4 w,(3) + Bw, 706 | 99.8 70.6

4 w, (n) * 70.7 | 100.0 | 70.7 | 0.5857

4  F,.Eq.(6-22) -0 0.0 -0 -0.0001 -0.2426

* Signifies value of w, normalized to a maximum of 100. # Sum [F ]| for w, = 1.
{b) Using approximate expression for F, for w, = 1 plus use of point & block steps.
STEP X/L >> 1 2 3 (kLh)? | Sum [F] |Sum [F, w, = 1]

OF, w,= 1. Eq.(6-22}# | -1.0 0.0 -1.0 O4# Type
0 w,(0). Initial 60 100 60 0.6046 of
0 F, Eq.(6-22) 16.3 19.5 16.3 13.023 Step
1 3w, Eq(6-18) 6.51 6.51 6.51 Block
1 w,(0) + dw, 66.5 | 1065 | 66.5
1 w, (n) * 62.4 100.0 | 62.4 | 0.5966
1 F,, Eq.(6-22) 12.4 15.4 12.4 9,289 244

2 8w, Eq(6-18)* 0.0 7.7 0.0 Point
2 w,(1) + dw, 62.4 92.3 62.4

2 w, [n) * 67.7 100.0 | 67.7 | 0.5871

2 F,.Eq(6-22) 4.4 -5.9 4.4 2.839 -2##

[ ] [ ] [ ] L] [ ] -

L] L ] [ ] [ ] . E ]
6 §w,Eq.(6-18)** 0.0 -0.1 0.0 Point
6 wy(1) + 8w, 706 | 999 | 706
6 W, (n) * 70.7 | 100.0 | 70.7 | 0.5857
6 F, . Eq.(6-22) 0.0 -0.0 0.0 0.02090 D H##

** Equation (6-18) applied only to point with maximum F, from preceding step.
## Sum [F, ] for w, = 1 and assuming kLh)2 = O,
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Note that for the Rayleigh relaxation method there is only one iteration per
step, whereas for the modal intensification method, there can be several
iterations of the mode shape for each step. (Only two, a block and a point
relaxation, were used for the simple case treated earlier.} For either variation of
the Rayleigh relaxation method, the final mode shape: 0:70.7:100:70.7:0 and the
value of (k,L)2 = [1/(1/4)?] {0.5857) = 9.371 is essentially the same as achieved

earlier by the modal intensification method.

In Table 6-9, the sensitivity to the accuracy of the initial mode shape
assumed is examined. The results are summarized for each version (a) and (b)
used in the previous table, in terms of the initial mode shape, and the number of
steps required to achieve a stable and accurate value. In some case, stability is
achieved, but the result does not represent the desired mode, i.e., the relaxation

process stabilizes on an invalid value of (k;Lh)? for the first mode.

In general, however, it is found that a stable, valid result is reached by using
the first version (a) of the Rayleigh relaxation method., which employed block
relaxation at each step, only when the initial assumption of mode shape had the
correct trend in slope. This occurred, for this simple example of the first mode
of vibration of a string, when the change in assumed amplitude between either
end point (= 0) and the next nearest point was greater than the change between

adjacent points near the middle of the string.

In contrast, for the second version (b) of the Rayleigh relaxation method,
which used only point relaxation after the first block relaxation step, and assumed
that the change in the residual error, F,, for unit change in w; was simply -2
[equivalent to neglecting (kLh)? in Equation (6-22) ], a valid, stable result was
always obtained, regardless of the assumption about the initial mode shape. Thus
this version of the Rayleigh relaxation method is similar to the Modal
Intensification relaxation method in that it was not sensitive to initial mode shape.

It has been found that this generalization still holds for more complex systems.

In all cases, as expected, fewer iteration steps were required when the

initial estimate of mode shape was close to the final result.



Table 6-9

Sensitivity of Rayleigh Relaxation Method to
Assumption for Initial Mode Shape of String

Relaxation Assumed Mode Shape at No. of
Version Point Between Ends Iteration
From Table 1 1 2 3 Steps
(a) 0 100 0 *
25 100 25 *
All BLQCK 50 100 50 *
Relaxation — 55 100 55 5
Correct Value 60 100 60 4
for F, . dw, 70 100 70 1
80 100 BO 3
a0 100 90 5
100 100 100 *
(b) 0 100 0 7
25 100 25 7
BLOCK + _ POINT 50 100 50 6
Relaxation — 60 100 60 6
Correct Value 70 100 70 3
for F, but 80 100 80 6
IF]I 0 wi = 1 ] = _2 90 100 90 6
or [kLh]2 = O 100 100 100 6

* Relaxation fails to reach valid or stable value,




6.2.6 Extensions to a Two-Dimensional System

In Figure 6-3, an area with dimensions L, x L, could be divided into N x M
cells with dimensions h, and h, in the x- and y-directions, respectively. The area
shown is, in fact, the finite-element network used by Parker? to represent a
cascade system of an infinite stack of parallel plates with a cord dimension
C = 2L, (in the x-direction), pitch spacing s = 2L, (in the y-direction), and cross-
span width b . By taking advantage of the symmetry of the modes in the vertical
x-y plan parallel to the flow for this system, it is only necessary to evaluate one
quadrant of the area between any two plates. This quadrant is the rectangle ABCD
noted on the figure made up of 51 cells (52 points} in the x-direction and four
cells (five points) in the y-direction. Rectangle ABCD is the same rectangle
appearing in Figure 6-2. In Figure 6-3, one set of additional points is required on
each side of this rectangle to supply fictitious points, as discussed earlier, for

defining pressure gradients along the area boundaries.

P (M.,1) = P(M.,3) for antinode A-BI(p) P(M,54)} = P(M.53) x %(%Lg%_
P{M.,2) = O fornode A-B {q)
L I N - |
M=]N=l23456789101]]2 ________ 51 5253 54 P(I.N] =
Mid- B c P(3.N)
Pitch J
3 T ———
¥
4 4tz
mi o IEET L
Plate
e —— :
7 A L I I I I
f P(7.N) = P(5.N) P(E.N) = O
Mid-
Chord
i Ly
| -

Figure 6-3. Network of Finite Elements Used to Represent « , B Modes of
Cascade System. (Reproduced from Parker.2)
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Boundary conditions are specified on this diagram for two different types of
modes (see Figure 6-2 a, b). For the o modes, there is an anti-node (pressure
maximum) along the mid-cord centerline, and the corresponding boundary
condition along this line is that the pressures at points on either side in the
x-direction [designated by P(M.1} and P(M,3) ] are equal, signifying a pressure
maximum and zero particle velocity along the line (M,2). For the § mode, the
pressure is zero along this mid-cord node line or P(M,2) = 0. For both of the
modes, there is also an anti-node along the mid-pitch line (2,N) so that the

pressures on either side, P(1.N) and P(3.N) are equal.

Two more boundary conditions are needed. One is along the line
corresponding to one plane of the cascade plate structure. In this case, along that
portion of the line coincident with the solid boundary of the plate, the condition
for a zero pressure gradient {i.e., zero particle velocity} is again invoked; that is,
P(7,N) =P(5,N}) for N=2to7 where N=7 at the point just before the end_of
the plate. For the rest of this line, which falls in the open, unconfined area of the
cascade duct (starting at the edge [N = 8] of the plate itself), the pressure is
assumed to be O or P(6,N)=0 for N =8to54. Finally, at the right side of the
rectangle, along the line CD, a new type of boundary condition is invoked -
namely, that the pressure gradient in the x-direction be a constant along this line.
This is imposed as a necessary and sufficient constraint on the pressure field in
this area to accommodate the fact that the field is unbounded in this direction
and, for this case, it can be shown? that the pressure field is expected to decay

exponentially with x.

For rectilinear two-dimensional sound fields such as designated in

Figure 6-3, the Helmholtz equation corresponding to Equation (6-8) is given by

d? P (x.y) N d? P (x.y)
2

o ™ + Plxyy) = O. (6-23)

Using a heuristic analysis, Parker? predicts that the corresponding mode shape for
the general case of an axial flow system without hard boundaries at the inlet and

outlet of the cascade would be expected to have the form

Pxy) = Po cos (ke y) exp[-kexv/1 - (/1] (6-24)



where k. = 2nf /c ., the wave number at the "between plates” plane wave

resonance frequency f. in the duct,

f = c/2s for the o, B modes and c/s for the vy, § modes (Figure 6-2),
§ = pitch spacing of the cascade plates,

f = the frequency of the acoustic field corresponding to the vortex

shedding frequency,
and f < f.

However, this analytical definition for the mode shape in the cascade
system can be validated by solving Equation (6-23) numerically with the relaxation
process using the boundary conditions specified earlier. It is only necessary to
specify a finite difference approximation for each of the second derivatives in
Equation (6-23). Allowing for rectangular cell dimensions hyx and hy . it can be
shown that this is given by the sum of two finite difference approximations - one
for each direction - in the formn of Equation {6-6). The result is

d*Plxy) | & Plxy)

e . FDA: + FDA, = FDA (x,y)
X y

P, v} + P X, y) -2 P (x,y)
h

where FDA (x.y) =

P'(x, -Y1—1) +P'(x,, v =2 Px, Yj)
2

h (6-25)

+
Y

{E P x5y, Y|] + (hx/hy)z P {x -erl)_2 1+ [hx/hylz] P (x. YJ]}

h

Thus the corresponding expression for the residual error for the Modal
Intensification method at the point x,, y, will be
F; = FDA (x,.y)) + Pix,. y;) (6-26)

where it is understood that FDA (x, y;) applies to the unknown modal pressures,
P'(x,, y;) . This equation is directly analogous to the one-dimensional version given
by Equation {6-11).



Finally. the corresponding expression for the Rayleigh quotient is given by

(kL)? = _ T P(xi. y) FDA (x. yj)
h2 PAxy)

(6-27)

Note that for these last two expressions, only the ratio of the (non-dimensional}
values of h, and h, is required for Equation (6-26), i.e., h, can be set to unity in
the denominator of FDA(x.y) for Equation (6-26) since only relative values of
Plx.y) are needed at this point. However, the true absolute (non-dimensional)

value of h, and the ratio h,/h, is required for Equation (6-27).

Given these basic tools, the computational steps involved for application of

the Modal Intensification relaxation process can be summarized in Section 6.2.7.

6.2.7 Computational Steps for the Modal Intensification Relaxation Method

The relaxation process using the Modal Intensification method is carried

out in the following steps for any system.

1. The boundary conditions are established, using either P'(x,, y;)) = 0 when
the point X, ¥, falls on a pressure node line, or P'(x.,, y) = P'(x1. vy
when the point x,. Yy, falls on a pressure anti-node line {in the

x-direction) such as at a rigid surface.

2. An initial estimate is made of the values for Pix.y) . the variable on the
right side of Equation (6-26), at each point. Although a rough estimate
of the expected final shape helps to speed up the iteration process, this

initial guess can be quite arbitrary - a constant value of 100 is often used.

3. The initial values for the unknown (modal) pressures P'{x,, y;} are

assumed to be zero.

4. The corresponding values for the error terms, F,,;. are computed at
each point from expressions like Equations (6-26). For the first itera-
tion, these initial values of F,; are the same as the initial estimates
of P(x, y) since. from Equation (6-23), with P(x;, y) =0, then
FDA (x.y) =0 and Fj;=Plx y).
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5. Using these values for F,, . a single, constant incremental change 8P is
computed using a Block relaxation step. The value for this initial

constant increment applied to all points is equal to

P = ~Z Py
Y Fyy for Plnyy) =1 (6-28)

where the numerator I F,; is the sum of the residual error terms
computed from Step 4, and the denominator [ ¥ Fyfor Plx,. y) =1]is
the sum of all the residual error terms when a unit change is made to
the pressure P'(x, y,) of each point. This quantity can be obtained from
the equivalent of the operations table (Table 6-1). For example, for the
case of a closed two-dimensional cavity with rigid walls on all sides that
is divided up into M x N cells, the value of this denominator is equal to
-4 [M+N)y/2-1].

6. The new value for P'(x, y) is computed as the sum of the previous value
plus the incremental change 8P'. The first time this new value of
P'(x;. y) is computed, it is the same as the increment 8P at all points

since the initial value for P'(x, y) was zero from Step 3.

7. New values for the residual error terms, F,;, are computed following

the procedures of Step 4.

8. For this step. it is most efficient to employ a Multiple Point Relaxation
procedurc where an increment 6Py is computed for each point x,, y;
which has a residual error within a range of 25 to 100 percent of the

maximum value found from Step 7.

9. Steps 6 to 8 are again repeated as necessary until a stable value for the
modal amplitudes P'(x,y) are obtained - that is, until the change from
one step to another is very small relative to the overall magnitude.
However, if the initial mode shape P(x, y,) was assumed to be a constant
value (say, 100) at all points, then a more efficient iteration process
involves use of a Block Relaxation step after several applications of the

Multiple Point relaxation procedure.



Figure 6-4 illustrates how the error in eigenfrequency and mode shape
decreases with the number of iterations for the case of a rectangular two-
dimensional cavity with hard walls broken down into four equal quadrants, 'each
made up of 6 x 4 cells. Figure 6-4a shows that the mode shape error decreases at
a relative rate comparable to that for the eigenfrequency but that the absolute
error for the latter is about 10 times less. For this figure, the 17 initial mode
shapes, P(x,y) . are estimated by a very simple algorithm indicating an amplitude
for the fundamental mode within each quadrant proportional to the quantity
[Gi/N) { /M)]172 . This provided the correct trend in slope for the mode shape.

Figure 6-4b shows how the error in eigenfrequency decreases with the
number of iterations when the initial modal amplitude was assumed to be a
constant but using three different strategies for the number of Multiple Point
relaxations employed before a Block relaxation was employed. (For the figure
legend, application of each Block relaxation was considered as one step.) It is
apparent that for almost any one of these techniques, the final error in eigen-
frequency is less than 2 percent after about 20 iterations whereas this accuracy
was achieved after only about 8 iterations when the more accurate estimate was

made for the initial mode shape.
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6.3 Application of the Relaxation Method to Cylindrical Coordinates

For systems involving axial symmetry, such as axial flow compressors, etc.,
the Helmholtz equation to be used for analysis of acoustic resonance frequencies is
given in two-dimensional cylindrical coordinates in the radial, r, and axial, z,
directions by the following equation (the coordinates r and z are non-dimensional

values having been normalized by a characteristic radius R)

d*P(rz) _ 1 dP(r.z) , d?P(rz) 2 _
2 + O + o + {kR)* P(r.z) = O . (6-29)

Since this expression describes the two-dimensional field in the cylinder in
a plane which contains the cylinder axis and any radius, this two-dimensional
model of the cylindrical sound field can be broken down (for the most general
case) into a network of rectangular finite element cells with dimensions h,x h, .
Then the FDA for the first three terms in this equation, at the point r, z;, are
given by the sum of approximations for the second and first derivatives in r plus

an approximation for the second derivative in z or
FDA(r,. z) = {3 Plru). 2) + (h,/h;)? T Pir,, 71} - 2 [1 + (h, /0, )] P(ri. 2)

+ (h,/2r) [Pty 2) - Plriy ) 1}/ b2 (6-30)

where the designation FDA(r,, z) is used here to distinguish the FDA from the
value for a rectilinear system. Note that this expression is essentially the same as
Equation (6-25) for the rectilinear two-dimensional system except for the added
approximation for the first derivative. Also. in this case, the actual values of h;

and h, , non-dimensionalized by R . must be used since they do not appear to the

same power in this equation.

To apply this expression to the Modal Intensification relaxation method,
Equation (6-30) is used in Equations (6-26) and (6-27) in place of the FDAIx, y)
term for the residual error F,, (for the i,j'th point) and for the eigenvalue, (kR)?,
respectively. The pressures P'(x,y) and Plx, y,) are, of course, also changed to

P'(r,. z) and P(r,. z).



6.4 Acoustic Resonances in Rectilinear and Cylindrical Cascades

With this general background on computation of acoustic resonance fre-
quencies in any system, consider, now, some of the results of the experimental
studies of the effect of these resonances on fluctuating pressures and structural
vibration in cascade systems. The following summary statements are drawn from
the conclusions stated in many of the papers listed in the references at the end of
this chapter.

1. Acoustic resonances in cascades can be excited by wake shedding at
frequencies for which the modal spacing is greater than the plate pitch
as well as at modes for which the modes have node lines in the planes of
the cascade plates.>

2. The lowest resonance frequency is controlled by the plate chord and the
velocity of propagation along the cascade is approximately the velocity of

sound.®

3. At higher resonance frequencies, the wavelength decreases faster than
the increase in frequency indicating that the velocity of propagation
along the cascade falls below the velocity of sound.5

4. In axial-flow compressors or fans with cylindrical geometry, the same
sort of cascade resonance effects can occur in the annulus areas around
the blades due to vortex shedding from the blades. The resonance
frequencies may correspond to an integral number of wavelengths
circumferentially around the annulus but may not relate to the number of
blades. However, they are only excited if the acoustic resonance
frequency is less than the value that would exist in the absence of any
blades.® There is a well-defined minimum number of circumferential
waves, for any given geometry, which propagate at approximately the
speed of sound, but as the number of waves increases for higher-order
modes, they can occur at nearly the same frequency leading to beating
between closely adjacent modes.”

5. Resonances in axial flow compressors are more likely to occur in any
one stage when there is a high temperature rise (corresponding to

energy input) in that stage.®
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Rotor blades can excite waves traveling backwards or forwards relative
to the blade rotation but backward waves tend to dominate. Stationary
blades can excite waves of the same frequency but traveling in opposite
directions around the annulus.” A subsequent, more detailed study
indicates a complex pattern for the type, predominance, and sensitivity

to flow of different circumferential modes in an annular cascade.®

For an axial flow compressor with large spacing between blades,
spinning acoustic modes can be generated by vortex shedding from
stationary blades. The direction of spinning can be forward or backward
(relative to the direction of the rotor) but for the system tested, higher
sound levels occurred over a wide flow-velocity range for higher order
forward-spinning modes (many wavelengths around the annulus). The
relationship between acoustic resonance frequency and flow velocity was
not significantly affected by rotor speed. Although significant rotor blade
vibration did not occur at the structural resonance frequencies of the
blades for the configuration tested, significant forced blade vibration did
occur at frequencies given by o, = w,-NQ where o, is the acoustic
resonance frequency, N is the mode number, and Q is the angular

rotor speed.®

For axial flow compressors with multi-stage blading, the highest acoustic
pressures occurred when the axial blade row spacing resulted in excita-
tion at the same frequency as the vortex shedding frequency of the

upstream blade row.10

Blades with thick trailing edges can excite resonances with peak
pressures of the order of two times the dynamic pressure or (0.5pV?)
where V is the relative flow velocity.? However, when compared to
rounded trailing edges, blunt trailing edges exhibit a lower resonant
response and a narrower range of velocities over which such resonances

occur.b

Another study of resonance effects on aerofoils with blunt trailing edges
indicates that predictions of unsteady aerofoil theory may help explain
why such shapes can result in higher acoustic resonance responses

(i.e., higher fluctuating pressures). This study also showed that a cavity
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12.

at the base of this trailing edge shape could minimize the resonance
buildup by momentarily trapping each vortex and forcing some of the
vorticity into the opposite shear layer where it is dissipated, thus

reducing the energy input to the acoustic system.1!

In certain ranges for the flow velocity in a cascade, the vortex shedding
frequency will become synchronized with, or lock onto, the acoustic
resonance frequency. This range is a function, among other things, of
the trailing edge profile of the cascade plates or blades. A plate with a
semi-circular trailing edge was found to result in the vortex shedding
"locking on" to an acoustic resonance frequency that was either above or
below the nominal vortex shedding frequency in the absence of the
plates. For plates with a blunt trailing edge, the vortex shedding
frequency only "locked up” to a higher acoustic resonance frequency. It
was also observed that for semi-circular trailing edges, the shed vortex
was less intense but this condition corresponded to more intense

acoustic pressures at resonance.!?

Vortex shedding from cascade blades occurs at all flow speeds with a
frequency given approximately by a Strouhal Number of 0.2. However,
the shedding is well correlated across the span of the trailing edge of
the blade and hence can act as a strong source of sound or structural
vibration only when the shedding frequency is close to an acoustic
resonance frequency. The resonance amplification factor or "Q" of such
resonances was observed to be of the order of 40 for one particular
configuration. The resonance amplification was reduced by nearly a
factor of 10 (or 19 dB) by adding small strips with a thickness about
20 percent of the blade thickness in a wavy pattern at the blade trailing
wedge.!3 It can be expected that this behavior and the resonant Q will
vary significantly with the geometry of the cascade system.



6.5 Quantitative Results for Analysis of Acoustic Resonances in Cascades

Parker2-!4 has shown that the acoustic resonance frequencies measured in
rectilinear cascades corresponding to a finite stack of parallel plates are bounded
by two curves as shown in Figure 6-5 for the first two modes for the type of
cascade system illustrated earlier in Figure 6-1. The two classes of modes are
designated by the mode numbers, (0,n) or (1,n). The first index, O or 1,
represents the number of half-wavelengths in the acoustic field parallel to the flow
along each plate. The second index, n, represents the number of waves in the
direction normal to the flow. The curves are derived from analyses of resonances
for an infinite stack of plates with a finite spacing. The upper bound for each pair
is derived with the Modal Intensification method for the case of finite values for
the plate spacing s. The lower bound is derived analyticaﬂy for this ideal case
when the stack spacing reduces to zero.!4 The experimental data points!® fall
between the two curves. The analytical expression which defines the lower bound

curve in Figure 6-5 is!4

e = (5] {3+ () wean ([5F-2]7]) e
where C = Chord length;
f = Resonance frequency = c/A;
f = Plane wave resonance frequency = ¢/2s;
s = Plate spacing;
m = 0,1 for modes corresponding to § or a modes, respectively: and
¢ = Speed of sound.

As suggested in Item 11 in Section 6.4, the vortex-shedding frequency in a
cascade is strongly influenced by the acoustic resonance frequency. The complex
pattern for this behavior is shown in Figure 6-6 for several different conditions.
For example, Figure 6-6a shows how the shedding frequency follows the expected
Strouhal number relationship until this flow-induced frequency approaches the
nominally fixed acoustic resonance frequency. Then the former "locks on" to the
latter but increases slightly as flow velocity increases over a substantial range.
Then, as flow velocity increases further, the shedding frequency may "jump” to
the next higher acoustic resonance frequency (Figure 6-6b). Note that the slight

increase in the vortex shedding frequency while it is "locked on" to the acoustic
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resonance frequency may simply reflect the expected increase in the latter as the
effective speed of sound (equal to static sound speed plus flow velocity) increases
with flow velocity. The other parts of Figure 6-6 show a similar behavior for other

flow and vortex shedding conditions.

6.6 Structural Vibration Responses in Cascade Systems

Whenever significant structural vibration occurs in a cascade system, there
are two resonance frequencies for each acoustic mode. The situation is illustrated
by the computed results in Figure 6-7 for the case of a plate with zero damping.
This figure and the following discussion are drawn from the summary in Parker
and Stoneman.! The key parameters in the figure are: ® = 2xnf, the angular
frequency of the actual vibroacoustic response:; ;. the mechanical resonance
frequency of the plate in a vacuum; w, . the acoustic resonance frequency with the
plate replaced by a rigid boundary; and the resonance frequency. Q, of the duct
with the same axial acoustic modal distribution as in the regions upstream and
downstream of the plate but with the plate removed (i.e., the empty duct

frequency).

For the example in Figure 6-7, only one plate is involved and its cord length
is assumed to be the same as the duct width. To illustrate how changes in the
mechanical resonance frequency. o, . of the plate interact with the acoustic reso-
nances, the former frequency was allowed to increase (representing an assumed
increase in plate stiffness) to give a range for the ratio w,/Q of 0.36 to 1.0.

Two conditions are considered to illustrate the general behavior: (1) w, < £,
and (2) w, > Q. For condition {1), if the flow velocity is such that vortex shedding
excitation is just slightly below the plate natural frequency (i.e., Point 1 in the
figure), the plate vibration is very strong because the plate and acoustic velocities
are out of phase which results in a stronger, span-wise, more coherent vortex
shedding process. In fact, for any significant vibration to occur in a cascade plate,
the vortex shedding from the plate must be well correlated along its span. Thus
this is the most critical condition to be avoided in a cascade system. On the other
hand, for the same value of ®,/$, if the vortex shedding excitation occurs at the
acoustic resonance frequency (o = ®,), while strong acoustic pressures may occur,

they will not be accompanied by large structural vibration responses of the plate.



For condition (2), with ©, > Q , structural vibration tends to be weakest if
the vortex shedding excitation frequency is close to the plate resonance frequency
but well above the acoustic modal frequency or ©, > ®, . (This is indicated as
Region B in the figure.) On the other hand, stronger plate vibration may occur,
along with a higher acoustic pressures if the vortex excitation frequency is close to
the acoustic resonance frequency, or ©, = ® corresponding to Region D in the

figure. However, this response decreases as the ratio w,/Q approaches 1.0.

In the w, to 0, transition region, where the absolute value of the difference
| Wp ~ O | is small, both the acoustic and structural responses tend to be large.
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CHAPTER 7
STABILITY OF FREE SHEAR LAYERS

by Michael J. Lucas
Wyle Laboratories

Stability can be defined as the fluid quality of being immune to small
disturbances in a flow. The decay of a disturbance — whether it is the subject of a
mechanical, electrical, or hydrodynamic system - is the necessary condition for
stability. Implicit to any of these systems is the amplification factor, the value of
which determines the rate at which an infinitesimally small disturbance intro-

duced will amplify or decay.

The basic equations used to examine the stability of fluid flows are a
perturbed form of the Navier-Stokes equations. Since these equations take the
form of non-linear partial differential equations, linearized approximations are
made to reduce the system of equations so that progress towards understanding
flow stability can be realized. The derivation and solutions of these equations are

the subject of this chapter.

The importance of linear stability theory lies in the ability to predict the
most unstable frequency of the disturbance. This frequency dominates the transi-
tion region between laminar and turbulent flow. The disturbance amplification
rate, the respective wave number, and the Reynolds number at which the flow

first becomes unstable are also determined using this technique.

A disturbance in an unstable flow may be represented in the form of a
velocity, vorticity, or pressure fluctuation. In the initial stages, the disturbance
grows with periodicity and amplification rate that often agrees well with linear
stability theory. When the amplitude of the disturbance becomes sufficiently
large, the flow deviates from purely two-dimensional form. In this region, the
frequency content of the fluctuations may still exhibit a pronounced component at
the most unstable frequency predicted on the basis of linear stability theory.
Farther downstream, the eddies become increasingly more three-dimensional

until they become random fluctuations and the flow is fully turbulent.

This chapter describes the basic mathematical formulations for stability

theory, with emphasis on predicting wavelength between eddies and frequency of



production. Section 7.1 derives the equations for a disturbance in a flow field.
These equations are the linearized form of the Bernoulli equation, the Orr—
Sommerfield equation, and the Rayleigh equation. Section 7.2 presents the
numerical solutions to the Rayleigh equations with emphasis on velocity profiles

common to plane parallel mixing layers, jets, and wakes.

7.1  Stability of Two Parallel Streams

7.1.1 Linearized Bernoulli Equation

Shown in Figure 7-1 are two fluid streams, one beneath the other, having
densities p, and p, , moving parallel with flow velocities U; and U,. The surface
common to both fluids is plane and horizontal when undisturbed. The inter-

mediate region between the streams is assumed to be infinitesimally thin.

The interest in this problem is to determine the conditions when the
boundary separating the two fluids becomes unstable. This will be accomplished
by superimposing a small oscillatory flow disturbance on the mean component of
velocity which will allow the flow constituents such as velocity, pressure, and

density to be decomposed into mean and fluctuating components.

Y - Upper
—— Ul Region
P1
////////////// :
I \Intermcdiate
U2 Region
I P2
Lower
- Region

Figure 7-1. Two Adjacent Uniform Streams Moving in the Same Direction.



The general form of the unsteady Bernoulli equation is

an _ q2 _ .
3 2 BV (7-1)

P =

P
where q2/2 is the kinetic energy, ¢ (x.y.t) is the velocity potential, and g is the
acceleration due to gravity. The horizontal and vertical components of the velocity
potential are given by u= %2— and v = % respectively. This relationship holds
throughout the entire field of irrotational flow of an incompressible fluid.
Assuming parallel mean flows, the velocity potential and its components, the
pressure, and the displacement can be expressed in terms of mean and

fluctuating components as

o (xyt) = $xy + & (xyt),

u (xy.t} = Uly + 0 &xy.1.

vixyt = vV xyth (7-2)
plxyt = Ply) + P xyth

y =y +7¥

The tilde, (=), denotes the fluctuating component, and the bar, (7), signifies the
mean quantity. Substituting these expressions for u.v,p into the Bernoulli
equation:; neglecting, by virtue of their smallness, higher-order terms such as 2

or ¥ 2: and subtracting the mean Bernoulli equation, the linearized

Bernoulli equation

=L+ U -8y (7-3)

- |'T
Qs
e.
Q
=y
H

is obtained. Referring to Figure 7-1, the fluctuating pressures at the top and

bottom of the interface are equal, so that

pl{9ﬂ+—ﬁ1%—gff}=p2{——+ Zd-gﬁ' {(7-4)



A second condition applied across the parallel stream interface is shown in
Figure 7-2. V., is the velocity normal to the stream interface and can be

described as

6 = tan {g—% . (7-5)
V, =vcecosB — usinb, {7-6)
\Y = VcosB - (U+ 1) sinB, (7-7)

where h is the interface vertical displacement. For small oscillations about a
steady motion, 6 is small and from Equation (7-7), V ~%. The relationship

between displacement and velocity at the upper and lower sides of the interface

becomes
- 2 h —  3h
Vi = 5T o+ U, T (7-8a)
-~ 2 h - 3h
V: = ot U g (7-8b)

where h(x.t) is the fluctuating amplitude of the displacement of the shear layer,

and the fluctuating velocity is given by ¥, = %—q;% and ¥, = %‘byi The system of

partial differential equations (Equations (7-4) and (7-8) ) can be simplified by

seeking a solution in terms of complex functions:

hi{xt) = heak-c, (7-9a)
O (yt) = ¢(y) elek-o, (7-9b}
¢, (y) = A ew, _ (7-9¢)
¢z () = A, eV, (7-9d)
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Figure 7-2. Consideration of Velocities Normal to the Interface.

The amplituae and phase information are the eigenvalues for this system. Here,
¢, h, and A are complex amplitudes; « is the wave number and is equal to 2n /.
¢ is the perturbation potential; 6, and ¢, are the perturbation potential for the
upper and lower streams, respectively. The quantity c is the speed at which the

wave is moving in the x-direction
c=c¢ + ig (7-10)

where ¢, is the wave speed of the oscillation and is directly related to the real

part of the complex angular frequency, B =B, +1ip, . through the wave number

B, = 2nf = o ¢ (7-11)

.
The quantity c; is called the disturbance amplification factor. The disturbance

amplification depends on the values of ¢, as follows:

¢, < 0  Disturbance Damped A

i VYN N N N
0 Neutral Disturbance A A A A

c, >0 Disturbance Amplified. | P e\
| O~ NS

g
1l

7-5




Substituting Equations {7-9) into Equations (7-4) and (7-8). after eliminating the
complex amplitudes h, ¢, and A, the complex velocity

1/2

= U+peUz 4 [Epop . pipe (5, TP
c = + [= Ul_U2)
p1+p2 O PrEp2 (py+pf (7-12)

is obtained. The first term on the right of the equal sign is the mean velocity of
the two currents. The second term may be either real or imaginary. When the
second term is real it represents the speed with which the wave is traveling
relative to the mean velocity. This term is imaginary if

(G- UaF > %%. (7-13)

The stream interface stability is therefore dependent on the fluid velocities and
the densities. If p; = py , Equation (7-12) reduces to '

G+Tp 4 -{ﬁwﬁz}

¢=—"%1 5 (7-14)
and may be expressed as ¢ =cy +ic¢; where
Cr = —Ulguﬂ and cy = * UI;UZ. (7-15)

7.1.2 Orr-Sommerfeld Equation

In the previous section a linearized form of the Bernoulli equation was
solved to show the hydrodynamic instability of two uniform streams. The analysis
disregarded details of the intermediate region between the streams, where
rotational aspects must be considered. The discussion that follows treats this
intermediate region in detail by basing unsteadiness predictions on the velocity
profiles in the intermediate region.

The derivation begins with the Navier-Stokes equations for two-
dimensional incompressible flow

Ju ov  _
~ Y 0, (7-16)
2
ot ax dy P ox d x2 dy?
2
at ox dy P dy d x2 oy? |’ (7-18)

where v is the kinematic viscosity.



Consider, as before. a mean parallel flow in the x direction. A tilde is used
to denote the fluctuating components and a bar signifies the steady mean quantity.
For purposes of simplification, the mean component of u will be restricted to

vary only with y and the mean component of p to vary only with x . This may be

written as
uxyt) = Uy + ulxy.t), (7-19)
vix,y.t) = vixy.t), (7-20)
plxy.t) = P(x + pxy.t). (7-21)

Introducing these equations into the Navier-Stokes equations, the linearized

equations for the disturbance become

o v
oy 0, (7-22)
o0 . wou , =aU , 19D 2~
ou L g9 4 v& 4+ L7 = vyVou
at ox Jy | Pox : (7-23)
v — v 19p _ 2~
3{+U—X+E—;~—VV v (7-24)

These three equations have three unknowns: U, ¥V, p. Pressure can be
eliminated by subtracting Equation (7-23) from Equation (7-24), leaving two
equations for 1 and V. These two equations are reduced to an ordinary

differential equation by seeking solutions of the type

v (xyt) = @ (y) etok (7-25}

where y is a complex stream function; @ is a complex amplitude function that
is assumed to depend only on y : and, as before, o and c are the wave number
and wave speed, respectively. The stream function represents an arbitrary

two-dimensional disturbance that is a Fourier decomposition of partial oscillations.

Calculating the fluctuating velocity components i1 and Vv from the stream

function

dy _ 9PN pex-cn

dy dy (7-26a)

=i
]

<t
i

- __@_ - _laq)[y) ela[x—ct]
ax ; (7-26Db)



Introducing these components into the linearized equations of motion, a fourth-
order differential equation in terms of the amplitude, ®(y) is derived

(U-¢) (@ - - 0@ = - a; @ -2 2 D" + 0 D) (7-27)

(s
Equation (7-27) is known as the Orr-Sommerfeld equation. The left-hand side of
the equation contains the inertia terms, while the right-hand side contains the

viscous terms.

The equation has been non-dimensionalized. All length dimensions have
been divided by the boundary layer thickness, &, or the momentum thickness, 6.

The velocities have been divided by the maximum velocity U, . The primes
denote differentiation with respect to a dimensionless coordinate y/8 or

y/0, and

= Umnd =~ Un9
Re = y or Re = v (7-28)

are expressions for the Reynolds number.

7.1.3 Rayleigh's Equation

Since most applications in turbomachinery, the value of the Reynolds
number is expected to be large, the right-hand side of Equation (7-27) can be
omitted because of the smallness of the coefficient 1/Re . In this case, the
disturbance amplification is dominated by inviscid effects, and only the inertia
terms on the left side of Equation (7-27) need to be considered. Equation (7-27)

reduces to

o = [V 4 a2)¢_

U-c (7-29)

This important equation governs the stability of parallel inviscid flows and was
first obtained by Rayleigh. It is a drastic simplification from the Orr-Sommerfeld
equation being a second-order ordinary differential equation as opposed to a
fourth. To solve the Rayleigh equation, the mean velocity profile Uly] must be
specified along with the appropriate boundary conditions. Numerical methods are
normally used to determine the dependence of the eigenvalues, o and ¢, on the

eigenfunction ®fy) .



7 1.4 General Properties of the Stability Equations

7.1.4.1 Temporal and Spatial Stability

The Orr-Sommerfield and the Rayleigh equations are both eigenvalue
problems. Their solution requires specifying the mean velocity profile and the
boundary conditions. When these conditions are furnished, the solution gives one
eigenfunction ®(y) and one complex eigenvalue « for each pair of values ¢ and Re.
These equations may also be solved to given one eigenfunction ®(y) and one

complex eigenvalue c¢ for each pair of values o and Re.

Before proceeding with the solution, it must first be decided whether the
growth of the disturbance will be followed as a function of time (see Figure 7-3) or
space (see Figure 7-4). When c is complex and « is real, the growth of the
disturbance is time dependent; when o is complex and c is real, the growth of
the disturbance is spatially dependent. The simple relationships that hold for

temporal and spatial systems are as follows.
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Figure 7-3. Illustration of Wave That Grows With Time.
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If ¢ is complex and « is real,

Vix, y. t) = Oy) ey, (7-30a)
vix. v. 1) = Dy e(iux—iu ert-iZact) . (7-30Db)
w(x’ v, t) = (I)(Y) euclt ei(ax—acrt), (7-300)

where ( ), and ( ); denote real and imaginary parts, respectively. If B = ac, then
ylx, v, t) = Oy et P (7-30d)
the real part of which is

v, = el [d (y) cos(ox-B,t) - & (y) sinfax-PB,t)]. (7-31)

For spatial amplification:

Wik y. t) = ®ly) eli o, x + 12 uix—iﬁt}‘ (7-32a)
Yk, y. ) = Ply) e®* e lorx-fh (7-32b)

the real part of which is
v, = e ¥ [ (y) cos (o, x-Pt) - O,(y) sin (o, x - )] . (7-33}

In the temporal! description the wave travels in the x-direction with a
speed cr and grows with time in accordance with the amplification rate of B,> 0.

In the spatial description, the wave grows with x and it is amplified when o;< 0.

Gaster! made theoretical comparisons between temporal and spatial theory.
His findings showed that the two viewpoints are not identical. However, for weak

amplification rates, when

Ci << Cr or Of << Or

a transformation is possible by the group velocity

T
U—t‘% = o (9). (7-34)

Here the real and imaginary parts are denoted by the subscripts r and it while
the spatial and temporal parameters are symbolized using an S and T. Ugg, is

the speed at which wave packets travel and is defined as

UGroup = d Br / aar (7-35]

7-10



This transformation is often used to make comparisons between temporal
and spatial calculations, but it is limited to small amplifications. In the case of
parallel flows, where there are large disturbances, Gaster demonstrated that
spatial stability theory more accurately represents the disturbance amplification
in a flow. Consequently, when comparing theoretical versus experimental
disturbance growth rates, favorable agreement is obtained with spatial stability

predictions.

7 1.4.2 Streamwise Amplification and Frequency Selection

Figure 7-5 illustrates the basic features of turbulent transition for a plane
mixing layer. Figure 7-5(a) shows two paraliel streams of unequal velocity that are
brought together to form a thin shear layer. As shown in the figure, the shear
layer undergoes vertical undulations that are characterized initially by an
exponential amplification of the fundamental frequency component B, along
streamwise coordinates. This rapid amplified growth is shown on Figure 7-5(b) as
a straight line on a semi-log coordinate graph. The exponential growth in the
disturbance was shown previously via stability theory to grow either in space or
time and had a corresponding slope of either f; or o;.

As the disturbance continues to amplify in the streamwise direction, the
amplitude increases until there is a departure from the linear growth. This
departure is seen in Figure 7-5(b) as a decrease in amplitude in the streamwise
direction. The deviation from linear growth occurs when the disturbance ampli-
tude is approximately 0.2 to 0.3 of the free-stream velocity. The transition region
that follows is highly non-linear; successive vortices coalesce with one another or
divide into smaller vortical structures. The spectral content of the non-linear
region shows an energy exchange oceurring between the fundamental component

and its harmonics.

For any unstable shear layer there is a non-linear growth region where the
growth of the fundamental disturbance component has saturated, and harmonics
of the fundamental evolve at a linear rate (Figure 7-5(b} ). At a distance well into
the non-linear region, the disturbance amplitude of these harmonic components

increases to a point where they dominate, thereby transferring the energy from
the fundamental to its harmonics. If the fundamental frequency is B, . then in

these types of problems there is often a subharmonic frequency B,/2 that is
directly related to the coalescence of two vortical pairs. This half tone might
hypothetically add or subtract to integer harmonics to produce a frequency
spectrum that looks like Figure 7-5(c).
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The frequency which will produce the most rapid amplified disturbance is
the primary disturbance frequency ;. This is determined by solving the Rayleigh
equation for a specified velocity distribution. Solutions to the Rayleigh equation
(Figure 7-5(d)) show the dependence of disturbance amplification rate versus
non-dimensional frequency. Our interest in this figure is the disturbance fre-
quency that corresponds to the largest amplification factor.

The most unstable frequency of a free shear layer is dependent upon tWwo
parameters: the mean velocity distribution, U{y), and the momentum thick-
ness 0. The mean velocity profile experiences substantial changes from the point
at which two parallel streams meet, to the point at which the flow is fully
turbulent. It is traditional when making linear stability calculations to base the
mean velocity profile on one which is fully developed. A fully developed profile
corresponds to a point far enough downstream that linear growth has ended. The
validity of this approximation rests on the fact that the downstream unsteadiness
in a shear layer acts as a dominant upstream influence in the sensitive region at
separation where initial unsteadiness begins. Frequency selection at the point of
separation is then coupled by a pressure feedback to downstream unsteadiness.

The momentum thickness, 6 . is normally estimated based on the local
shear layer thickness at some representative location downstream of the separa-
tion point. The proper choice of the momentum thickness is often unclear and
presents difficulties when making predictions of the fundamental frequency using
stability theory.

Consider, for example, a splitter plate or nozzle. At distances sufficiently
far downstream, the momentum thickness of a wake or fully developed jet
remains constant. This can be verified using simple control volume theory. In
the region immediately downstream of the nozzle edge, however, where the mean
streamlines are not straight and parallel, and/or the jet has a top-hat velocity
distribution with thin shear layers, the momentum thickness will tend to
increase, perhaps 20 to 30 percent, or more, to its equilibrium, fully established
value. On the other hand, for the case of mixing layer, there is no equivalent
conservation concept and the momentum thickness increases continuously in the
downstream direction. When applying these concepts, the momentum thickness
of a jet is typically based on the orifice half-width; while for a free shear layer the
momentum thickness is calculated at the midpoint in the linear growth region.



7.2  Predictions for Free Shear Layers

Not until the early 1960s was it possible, through the use of digital
computers, to economically evaluate the eigenvalues and eigenfunctions from the
linearized stability equations for realistic mean velocity profiles. Michalke2 was
one of the first to demonstrate the power of using instability analysis for pre-

dicting the disturbance growth rates in mixing layer types of flows.

Shortly thereafter, linear stability calculations were made for other parallel
flow problems. Most of these works fall into three main categories: mixing layers,
jets, and wakes. This section describes the most notable solutions and shows how
these calculations can be used in predicting the fundamental disturbance fre-

quency to a free shear layer.

Table 7-1 is a collection of solutions to the Rayleigh equation. The left
column shows the mean velocity profiles Uly) used to solve the Rayleigh equa-
tion. The right column shows the corresponding eigenvalue solutions. The solu-
tions to the first two profiles assume temporal instability, whereas the remaining
profiles use a spatial stability approach. The remainder of this chapter, Sec-
tions 7.2.1 through 7.2.4, address each of the velocity profiles shown in Table 7-1.

7.2.1 Discontinuous and Piecewise Linear Profiles

The discontinuous profile shown in Table 7-1(a) was described by Helmholtz
in 1868.% The two streams are parallel and are considered to be separated by a
vortex sheet of zero thickness. In the adjoining figure, an infinitesimal dis-
turbance o grows at the rate e*i!. The stability criteria derived in Section 7.1.1
and included in the table show that when the density of the fluids is the same, the

shear layer is unstable at all wavelengths.

The piecewise linear profile shown in Table 7-1(b) is closer to the smooth
profile to be expected in an actual fully developed shear flow. Rayleigh* calculated
the growth rate of the amplified disturbance as a function of the disturbance wave
number. This shear layer is most sensitive to disturbance amplification when
o= 04.



Table 7-1

Solutions to the Rayleigh Equation for Six Mean Velocity Profiles

Mean Velocity Profile Solution to the Rayleigh Equation
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Table 7-1 (Continued)
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7.2.2 Hyperbolic Tangent Profile

In the case of a hyperbolic tangent profile, the amplification factor pre-
dicted by spatial stability theory is based upon the dimensionless velocity ratio
A=(U,-U,)/(U, + U)) across the two flows. When A =0, the upper and lower
velocity are equal and there is no shear, the flow reduces to a wake. If A=1,

there is shear due to the movement of the upper stream against a stationary

lower stream.

The amplification factor -&; versus normalized frequency is plotted for
selected values of A in Table 7-1(c}). The circles indicate the point on the curve
where there is maximum amplification. It is seen here that for all values of A,
the value of B ranges between 0.21 < < 0.225 for maximum amplification. The
maximum amplification rate increases approximately linearly with A, and the

associated phase velocity is equal to the average velocity of the two streams.

Many flow geometries can be modeled using a hyperbolic tangent profile.
The three most common are backward facing steps, cavities, and jets. In real flow
situations it is difficult to estimate the shear layer momentum thickness. Ideally
the momentum thickness is measured at a distance downstream from the point of
separation which corresponds to the middle of the linear growth region. This is
often approximated for these geometries by computing the momentum thickness
at the point of separation based on the boundary layer profile. Figure 8-4 in
Chapter 8 suggests a technique to predict the spreading rate and, in turn, the
momentum thickness for a plane mixing layer. These techniques are useful when

estimating the frequency shifting that will occur when vortices pair and merge.

As an example, consider flow over a cavity for which the value for A is equal
to 1. From Table 7-1{c), the non-dimensional frequency corresponding to the

maximum amplification rate is

u (7-36)
so that the Strouhal number is
st = 8 = 0.017
U (7-37)



This can be compared to the experimental work of DeMetz and Farabee,® who
determined that, for a laminar boundary layer preceding a cavity, the resonance
frequency corresponds to St = 0.022 which was valid for circular and rectangular

openings.

7.2.3 Jet Profiles

In the case of jets, two kinds of instabilities exist: one that is associated
with the thin shear layer lip instability and the other that is associated with the
efflux as a whole. The former is termed the shear layer mode, and the latter is
commonly referred to as the preferred mode. The emphasis in this section is on
the shear layer lip instability. Table 7-2 summarizes the different methods used to
estimate the shear layer modes. For a discussion on the preferred mode of

instability, see Section 8.1 or Reference 8.

Table 7-2

Jet Matrix, A Survey Using
Methods Derived From Linear Stability Theory

Flow Velocity Profile
Jet ~
e | =P |
Fully Top-Hat
Developed Shaped
Planar Table 7-1(d) " Table 7-1(c)
Axisymmetric Table 7-1(c) Table 7-1(e)




7.2.3.1 Planar Jet Profiles

Shown in Table 7-1{(d) are the results to Sato's velocity profile® for a plane
parallel jet profile. The solution assumes the flow is "quasi-parallel”, which means
that the ratio of the axial component of velocity is much greater than its vertical
component. The non-dimensional frequency appearing in the figure is based on
the shear layer half-width, b, which often is approximated using the nozzle
half-width, b,.

The two curves drawn in the figure illustrate, for the symmetric and anti-
symmetric disturbances. the variation of the disturbance growth rate as a function
of non-dimensional frequency. Symmetric disturbances are often called varicose
instabilities and antisymmetric disturbances are called sinuous instabilities.
Anti-symmetric disturbances occur in most practical situations and have a
distinctive sinuous or sinewave-like form. The antisymmetric disturbance has a

non-dimensional frequency of 0.52 at maximum amplification.

When the jet stream near the nozzle exit is top-hat shaped with thin shear
layers, the frequency of the lip instability can be estimated using the results from
a mixing layer (see Table 7-1 ¢). In such a situation, the streamlines are no longer
parallel. The shape of the instability wave and the mean velocity profile will vary
with streamwise distance. The momentum thickness, 6, will increase by 20 to
30 percent, or perhaps even more, until it reaches its equilibrium, fully established
value. The momentum thickness used in these cases is determined at the point of
separation from the nozzle lip. This value can be estimated by performing a
boundary layer calculation that begins at the entrance to the nozzle. The
momentum thickness is evaluated at the point where the boundary layer separates

from the nozzle lip.

7.2.3.2 Axisymmetric Jets

Experimental measurements made in circular jets indicate that the vortices
generated near the nozzle exit are initially axisymmetric, but that the disturbance
of higher-order helical modes increases significantly farther downstream. Shown
in Table 7-1(e) are solutions to the axisymmetric mode made by Michalke for the
circular jet. This is the lowest-order mode. To the left of the figure are the
velocity profiles for selected R/6 coditions. 6 is the initial momentum thickness

and is evaluated at the nozzle exit. The ratio of R/6 is a measure of the radius of



the nozzle relative to the boundary layer thickness and its value determines the
maximum amplification frequency. For example, when the velocity profile is a
thin shear layer, R/6 is infinite. From Table 7-1(e) it is found that the Strouhal
number (f 0/U) has a value of 0.017. This value is identical to the mixing layer

when A=1,

When the velocity profile is fully developed, such as downstream from the
potential core, the jet stream can only support higher-order spinning modes.

Results to higher-order modes can be found in References 11 and 12.

The effect of compressibility in a circular jet is shown in Figure 7-6. The
stability equation is solved for two profiles: R/8 = 100 and R/6 =6.25. It is seen
here that irrespective of the jet mode, compressibility has the effect of lowering
the most unstable frequency and amplification factor with increasing Mach
number. The shifting effect just described is not nearly as severe for R/6 = 100
as it is when R/8 = 6.25.

7.2.4 Wake Profiles

There are two classes of wake flows: those from thin, streamlined, trailing-
edges and those from bluff bodies. In the former case, the disturbances grow in a
fashion similar to mixing layers and jets. The growth of the instability is due to
the inflection points in the mean velocity profile that are characteristic to thin
shear layers. In the latter case, the mean velocity profile has a very deep deficit
that may even be reversed in the near wake region. There will be large-scale
separations behind the bluff body for which a classical example is the flow behind
a circular cylinder. However, farther downstream from a bluff body, the mean
velocity profile has a form similar to the thin trailing edge and one can apply the

techniques which are to be described herein.

A major share of wake flows encountered inside turbomachinery will be of
bluff body types. In turbomachinery, turbine blades tend to be relatively thick and
have been observed to produce a von Karman vortex sheet, even at extremely high
Reynolds numbers. Fan blades from a compressor or supercharger are relatively
thin and will produce wakes that are more typical of those from streamlined
bodies. In this section, results from Mattingly and Criminale!3 are presented for
streamlined bodies. Chapter 9 describes techniques to estimate the frequency

from bluff bodies of different geometries and from tube banks.
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The results of Mattingly and Criminale!® are shown in Table 7-1(f). Their
wake was generated using a NACA 0003 symmetric airfoil having a cord length
denoted by L and a thickness of 2b. The velocity profile has been non-
dimensionalized with respect to the centerline velocity and is shown to collapse
at selected downstream coordinates onto itself. Knowing the dependence of the
centerline velocity on downstream coordinates, successive calculations may be
made using different mean velocity profiles to determine the variation of the
eigenfunction and eigenvalues with downstream coordinates. This procedure is
necessary to account for the continuous changes of the mean velocity profile in the

formation region.

The wake may operate either as a symmetric or antisymmetric disturbance.
The two disturbance modes are treated in the solution through the boundary
conditions for the vertical component of velocity along the wake centerline.
Experimental measurements show that naturally amplified disturbances in the
wake are of the symmetric kind.

Table 7-1(f) lists the eigenvalue results at successive wake stations. It is
seen in the table that the frequency monotonically increases with downstream
coordinates for both disturbance types. The amplification factor for all wake
stations is consistently larger for the symmetrical disturbances than for the anti-
symmetric disturbance. Thus the symmetrical disturbances are the most highly
amplified according to the linearized stability analysis. Averaging over the wake
region investigated and accounting for a wave propagation phenomenon that
produces a frequency shift in the eigenvalues, the maximum spatial amplification
is one for which

B=2rth - 055 and o = 288 = 0.994.
U. A (7-38)

As an example, the non-dimensional frequency for a wake behind a
cylinder is

g = 27fD/2) _ 455,
U (7-39)

with a corresponding Strouhal number of

U T {7-40)

In Chapter 9 it is shown experimentally that when the distance between the
shear layers, measured at the end of the formation region, is used to calculate the
Strouhal number, the Strouhal number equals 0.18 and is independent of the
body shape.
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CHAPTER 8
JETS

by Michael J. Lucas
Wyle Laboratories

The two basic forms of a nozzle are circular and planar. Nozzles can be
either long and smoothly tapered or short in length, possibly terminated with a
knife-edge orifice. A nozzle that is well formed to avoid flow separation from
inside the nozzle may have a velocity profile at the exit that is fully sheared, while
a short nozzle with an abrupt termination may have a thin shear velocity profile
that is fully turbulent. The shape of the nozzle ultimately determines the
character of the mean velocity profile at the nozzle exit, the downstream develop-

ment of vortex structure, and the amount of flow noise generated.

In this chapter, procedures to predict the most amplified frequencies are
described for the circular and rectangular jets. In most situations, turbo-
machinery jet nozzles are not well formed and have large Reynolds numbers,
producing a velocity profile at the nozzle exit that is thin shear. For this reason,

this chapter appropriately limits the discussion to thin shear velocity profiles.

Section 8.1 describes the procedures for estimating the most amplified
frequencies in a planar and axisymmetric jet. Sections 8.2 and 8.3 contain rela-
tionships for sizing the jet potential core and for calculating the vortex merging
locations. In some cases, the jet stream inside turbomachinery will interact with
other engine components. The procedure described in Sections 8.2 and 8.3 are

used for evaluating this condition. Section 8.4 contains a sample calculation.

8.1 Shear Layer and Preferred Instability Modes

Thin shear layers originating from the nozzle lips form an instability wave
that rolls up into coherent structures that merge and are convected downstream.
The process of successive vortex merging leads to the shear layer spreading and
lowering of the vortex passage frequency. Several vortex mergings occur between
the nozzle and the end of the potential core. Farther downstream, these vortices
become large-scale structures producing perturbations that can feedback to the

trailing edge. It is these large-scale vortex structures that are characteristic of



the column mode of instability f,. The vortices that roll up at the nozzle lip are

characteristic of the shear layer mode f{, .

The shear layer mode with instability frequencies designated as f, has a
length scale of 8 which denotes the thickness of the shear layer. The preferred
mode or colunn mode with instability frequencies f, has a length scale of D or w
which denotes the diameter of the axisymmetric nozzle or the width of the planar

nozzle, respectively.

To estimate f, for a thin shear velocity profile, use the following Strouhal

number
— fne —
St o= o= 0.017, (8-1)

m

where f, is the most amplified frequency and is sometimes called the shear layer

mode frequency, @ is the initial momentum thickness, and U, is the mean

velocity measured at the jet exit. The initial momentum thickness 8 is
. -1/2

proportional to U_ " and hence

(8-2)

Measurements of unsteady velocity (see Table 8-1) at the nozzle exit con-
firmed the 3/2 power dependence of shear layer mode on free-stream velocity but
indicated a stepwise variation of the frequency with the jet exit velocity. The
initial Strouhal number derived from these experiments showed some degree of
scatter. Possible causes for the scatter are probe interference, the level of

turbulence contaminating the air supply, and the jet nozzle configuration.

The preferred mode measured for a circular jet in air is shown in Table 8-2.
The dimensionless frequency for the preferred mode is found to vary between
0.25 and 0.5, depending on the experiment. More recent experiments have
shown that the preferred Strouhal number is dependent on the initial momentum
thickness at low jet velocities, as shown in Figure 8-1 for both circular and planar
jets. For high flow rates, the Strouhal number for the circular jet becomes
constant and equal to 0.44 and for the planar jet equal to 0.25. Presently, there is
no satisfactory explanation for the Strouhal number remaining constant above a
critical value. The important feature to realize is the preferred mode is present
even though the boundary layer from the nozzle lip may be turbulent at separation
and is incapable of undergoing successive vortex merging characteristics of the

thin shear layer.



Table 8-1

Shear Layer Mode Measured For Planar and Circular Jet in Air
{Reproduced from Gutmark and Ho'?)

Preferred Mode Measured for Circular Jet in Air
(Reproduced from Gutmark and Ho!?)

Authors Jet Type St=£,0/Uy,
Sato! Planar 0.012-0.017

Michalke? Theoretical Prediction Planar 0.0165
Browand? Planar 0.013
Miksad? Planar 0.017

Piisenmaier> Planar 0.0128
Hussain and Zaman® Planar 0.012
Freymuth? Axisymmetric 0.018
Michatke® Axisymmetric 0.009
Davies and Baxter? Axisymmetric 0.014
Husain and Hussain!© Axisymmetric 0.017
Drubka'l! Axisymmetric 0.013

Table 8-2

D U Mach St = Probe
Authors (c 131 ) (m /::ec] Ntu:;)er. £,D,/ U, Lo;:{s;tll):m, Re x 10*
Bechert & Pfizenmaier!3 4.0 204 0.6 0.48 Far Field 50
Chen'? 5.7 67 0.2 0.35 3.3 26
Crowe & Champagne!® 5.0 31 0.09 0.3 4.0 10
Fuchs!6 10.0 40 0.12 0.5 3.0 24
Ko & Davies!? 2.5&5.0| 6tol00 0.02 to 0.3 0.3t0 0.5 1.58&&4.0| 3t030
Moore!® 0.39 102 t0 307 | 0.2100.9 0.35to 0.5 | Far Field | 2510 75
Peterson!? 2.5 30 0.09 0.25t0 0.4 4.0 5
Yule20 V 5 2 to 64 001 to0.18 | 0.3 to 0.45 4.0 0.7 to 20
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Figure 8-2 shows the range of Strouhal numbers obtainable from an
axisymmetric jet. The shaded region. as before, represents the preferred mode.
The curve St =0.0156 VRe shows the expected vortex formation frequency due to
the shear layer mode. It represents the upper limit in Strouhal numbers and
corresponds to the shortest wavelength of the jet. Thus the region bounded by
the shear layer mode and the preferred mode forms an envelope of possible

Strouhal numbers for a circular jet.
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8.2 Potential Core Dimensions

Depicted in Figure 8-3 is a turbulent jet spreading in a medium that has a
frec-stream velocity. The two fluids are assumed parallel and the boundary layer
thickness at the nozzle exit is assumed negligible in comparison to the orifice
diameter D;. The jet is shown here to have a uniform velocity U, that expands
into an adjoining media with a free-stream velocity of U, . Using nomenclature

consistent with Abramovich,26 the ratio of U, to U, is
m = Uy/U, . (8-3)
When m =0 the jet expands into a medium that is at rest.

In Figure 8-3b, Lines Ol are a boundary that defines the region of constant
longitudinal velocity U, . This region is the potential core. Inside the core there
is no transverse component of velocity. Line 02 defines the line of constant
longitudinal velocity, U, . The mixing layer (hyperbolic tangent) velocity profile,
discussed earlier in Chapter 7, is bounded between lines 01 and 02.

The shear layer thickness, b . increases proportionally with the location of

the free-stream along the x-direction, X, beginning at the nozzle lip, i.e.,

b=4+1X

l’m). (8-4)

l+m

The proportionality factor 1 is an experimental constant that varies between the
limits of 0.15 and 0.3; smaller values of t are used when U; and U, are moving
in the same direction. Larger values of 1 are used when U, and U, move in

opposite directions.
Equation (8-4) may be written as

b = +1XA, (8-5)
where A is the dimensionless velocity ratio

U; -Us

U1+U2 ) {8_6]

The minus sign in Equations (8-4) and (8-5) is used when the free-stream
velocity is greater than the jet velocity (m > I). For a hyperbolic tangent profile,
the momentumn thickness 6 is exactly equal to one-fourth the shear layer
thickness (b = 46). Thus the value of 6, like b, increases linearly with x. From

Equation (8-5), 6 can then be expressed as
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6 = x1XA/4, (8-7)

and derivatives of the shear-layer and momentum thicknesses, respectively, are
db/dx = 1A and db/dx = 1A/4. (8-8)

Figure 8-4 shows the spreading rate of the turbulent plane mixing layer as a
function of A. The slope of the lines are values of 1. The divergence of the
straight lines increases with A and the scatter of the data is due in part to
differences in the experimental configurations. According to Abramovich, when
A=1 (i.e.,, Uy =0), 1=0.27 for a planar and axisymmetric jet.

Referring to Figure 8-3, the widths of the shear layers, Y, and Y,, are given by
Yy - 0416 + 0.134
b " (8-9a)

and
‘%2 = -0.584 + 0.134 m.

(8-9b)
Equations (8-9) are for a planar jet but are approximately correct for an axi-
symmetric jet. It is assumed here that the momentum thickness at the exit is

very small in comparison to the nozzle width (8 << D, /2).
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Figure 8-4. Variation of Shear Layer Spreading Rate db/dx
With Velocity Ratio o For a Turbulent Mixing Layer.
(Reproduced from Oster and Wygnnanski.?’)
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When the free-stream velocity is greater than the jet velocity (m > 1), the
external edge (line 02 in Figure 8-3b) of the shear layer may intersect the
centerline of the jet. In this situation the jet efflux will be strongly warped.
Depending on the value of m , there may no longer be a positive pressure gradient
along the jet centerline and the formation of a circulation region near the jet

centerline is likely.

The thickness of the shear layer at the end of the potential core, b, is

given by
b - 1
(W or ))) 2(0.416 +0.134 m) (8-10)

and from Equation {8-5) the length of the potential core, X, , for a planar jet is

(WorD)  21(1-m) (0.416+0.134 m) (8-11)

Figure 8-5 shows the variation in length of the potential core as a function
of the velocity ratio m . It is seen here that the lengths of the potential cores for

planar and axisymmetric jets are approximately the same.

Planar Jet

------ Circular Jet

0 0.5 1.0 1.5 2.0 2.5 3.0 35 4.0 45
Velocity Ratio. m

Figure 8-5. The Potential Core Length (X)) as a Function of the
Velocity Ratio (m) . (Reproduced from Abramovich.?%)



8.3 Vortex Merging in a Jet

The shear layer growth is attributed to the development of a single vortex
that merges with successive vortices. The vortex merging creates pressure waves
which propagate upstream that may influence the development of the shear layer.
The time required for a vortex to reach a pairing location and the time needed for
a pressure signal at the point of merging to propagate upstream is equal to an

integer multiple of the period, i.e.,

X(g-+3) = £ (8-12)
where X; is the distance from the trailing edge to the i'th vortex merging
location, f, is the frequency after the i'th merging, U, is the convective speed of
the vortex, c¢ is the speed of sound, and n is an integer. The experimental value
for n is approximately 2. The measured streamwise convective velocity U, of the
flow disturbance is approximately U,= 1/2 (U, + U,) where U, and U, are
defined in Figure 8-3. At low subsonic speeds, 1/c term can be neglected.

Equation (8-12) then becomes

i X/U. = n (8-13)

and
i = 1,/ 2! (8-14)

where f, designates the shear layer mode. Substituting Equation (8-14) into

Equation (8-13). the merging location of the i'th vortex
Xi=2nU./f, {8-15)

can now be predicted. This formulation has been verified with experimental
data.!?



8.4 Exzample Calculation

As an example, consider an axisymmetric air jet that has a nozzle diameter
of 5 cm and mean flow velocities of 3 m/sec, 5 m/sec, and 8 m/sec. The Reynolds

number is calculated to be as shown in Table 8-3,

Table 8-3
Sample Jet Reynolds Number

U, (m/sec) Re
3 1.1 x 104
5 1.8x 10¢
8 2.8x 108

where Re = U, D;/v. The minimum Reynolds number of all three velocities is

greater than 104, therefore the mean exit velocity profile will be thin shear.

Next, calculate from the Strouhal number the frequency associated with the
preferred mode of the jet column. In this situation the Strouhal number can vary
between 0.3 < Stp < 0.5, and the frequency (see Table 8-4} is found to vary between
18 Hz and 80 Hz.

Table 8-4
Sample Jet Preferred Modes

Freq. {sec’!) Freq. (sec’!)

U, {m/sec) at Stp = 0.3 at Sty = 0.5
3 18 30
5 30 50
8 48 80

Finally, calculate the thin shear layer instability as measured at the nozzle
exit. Using Figure 8-2 to deduce the Strouhal numbers, the shear layer mode {see

Table 8-5) varies between 96 Hz and 416 Hz.

Table 8-5

Sample Jet Shear Layer Modes

Uy (m/sec) Stp Freq (sec!)
3 1.6 96
5 2.1 210
B 2.6 416




Measurements made by Cohen and Wygnaski?® of a 5 cm air jet are shown in
Figures 8-6 and 8-7. In this study, Cohen and Wygnanski are able to determine a
number of quantities in the jet including the momentum thickness and unsteady
velocity near the exit where the shear-layer mode dominates. In the remainder of
this example, the shear-layer modes are calculated using Equation (8-1) and

compared with the velocity spectra measured near the jet exit.

In Figure 8-6a the dependence of momentum thickness on the jet velocity
is shown. These measurements were made at x/D = 0.25, near the end of the

linear growth region. The solid curve drawn indicates a U-'/2 dependence.

In Figure 8-6b, the momentum thickness and the mean centerline velocity
are plotted as a function of streamwise coordinates. It is seen here that the
momentum thickness at the nozzle has an initial value of approximately 0.34 mm.
then increases linearly in the x direction. The mean velocity depicted in
Figure 8-7b has a constant value until x/D = 3.5; at this point the velocity linearly
decreases. The deviation of the centerline velocity from its initial value marks the

end of the potential core.

Using the momentum thickness from Figure 8-7a, the thin shear layer lip
instability is determined from Equation (8-1). The frequencies become as shown
in Table 8-6.

Table 8-6
Shear-Layer Modes Calculated Using Momentum Thickness

UL, (im/sec) f (sec)
3 95
5 208
8 411

Figure 8-7 shows spectra measured at two centerline locations from the
nozzle exit. The broken line indicates measurements made at x/D =0 and the
solid line measurements were made at x/D = 0.25. Also drawn in the rfigure
(lower part} are the disturbance amplification rates as predicted by linear stability
theory for a thin shear layer. Comparison between Tables 8-5 and 8-6 with

Figure 8-7 shows favorable agreement.
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CHAPTER 9
VORTEX SHEDDING FROM BLUFF BODIES

by Michael J. Lucas
Wyle Laboratories

The interest in vortex shedding from bluff bodies, in relation to turbo-
machinery, stems from the fact that this phenomenon may result in acoustic
coupling inside turbomachinery. If the natural acoustic frequency of a standing
wave in a duct or enclosure coincides with the shedding frequency from a bluff
body, then there will be an energy transfer between the mean flow and the
acoustic wave, producing sound amplification. Acoustic coupling will also lead to
highly amplified vortex shedding that may in turn result in structural failure of the
body itself.

Three geometries common to turbomachinery lend themselves to a bluff
body flow instability analysis: instrument probes, struts, and heat exchangers.
Instrument probes might be a gas temperature thermocouple or a pitot pressure
tube that is mounted to a cylindrical rod which in turn is fastened to the engine
housing. Example struts are turning vanes and nozzles; both of these components
are prevalent throughout an engine. Heat exchangers are used in turbomachinery
to preheat gases prior to combustion. In the SSME the liquid oxygen injector

posts are an example of such a heat exchanger.

In this chapter the dependence of non-dimensional frequency (Strouhal
number) on Reynolds number will be presented for selected geometries.
The Reynolds number range applicable to turbomachinery problems is between
104 and 107; thus the data will be appropriately limited to this range of

Reynolds numbers.

Section 9.1 describes the mechanisms and respective regimes for vortex
generation from solitary cylinders in a cross-flow, Section 9.2 presents compar-
able data for other bluff bodies, and Section 9.3 shows methods used to predict

the Strouhal number for tube bundles in cross-flow for various tube configurations.



9.1 Vortex Formation From a Cylinder

The basic mechanism that determines the frequency of vortex shedding
behind any bluff body is the distance separating the two shear layers. As the shear
layers are brought closer together, their interaction is facilitated and the shedding
frequency increased. In the case of the cylinder there is no single point along the
surface of the cylinder that promotes boundary layer separation. The lack of a
clearly definable separation point on the surface of the cylinder makes the
azimuth for a separating boundary layer more sensitive to the Reynolds number
than other geometries in cross-flow might be, such as a square or a triangle. This
in turn impacts the distance separating the two shear layers and their shedding

frequency.

The role of Reynolds number on the flow structure interaction in the wake
of a cylinder is depicted in Figure 9-1. These figures were adapted from a review
article by Morkovin! that shows how the underlying flow field characteristics
change with Reynolds number. The regimes and terminology described herein

are consistent with the literature.

The Reynolds number range is divided into five regimes. The concerns of
this chapter are the so-called subcritical, supercritical, and transcritical regimes.

Each of the regimes shown in Figure 9-1 is described below.

Vortex shedding is considered to be subcritical when the attached flow
near the surface of the cylinder is laminar to and past the point of separation. The
boundary layer separates from the cylinder at an angle of approximately 6 = +80°

from the forward stagnation point.

The subcritical regime extends from the pure Karman range up to a
Reynolds number of 2 x 105 The Karman range is where unsteadiness sets in
(Re ~ 40} and where well-defined vortex shedding persists (up to Re ~ 300). In
the subcritical regime there exists an underlying organization in the vortex
shedding; vortices are shed in a clearly definable alternating pattern. The
generally accepted value for the Strouhal number in this range is 0.21. This value

is accurate to within 5 percent.

When the Reynolds number is increased beyond 2 x 105 the laminar
boundary layer separates, quickly experiences a transition to the turbulent state,

reattaches on the surface of the cylinder, then separates again farther along the
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cylinder. In the supercritical regime, the flow structure on the rear half of the
cylinder is dramatically different from the subcritical regime and the pressure
redistributes causing a well-known decrease in the mean drag coefficient. The
highly coherent periodic shedding ceases. However, there still remains a wake
oscillation that has an underlying coherence, though the spectra are wideband as
opposed to periodic. Investigators! have reported, in the supercritical regime,
Strouhal numbers that vary between 0.17 to 0.45. The Strouhal number about
which the wake will operate is dependent upon the free-stream turbulence and

the cylinder surface roughness condition.

When the Reynolds number exceeds 3 x 10° the boundary layer undergoes
turbulent transition prior to separation. This regime is known as the transcritical
regime. If the cylinder has a rough surface or if there is some degree of free-
stream turbulence, then the transition to the transcritical regime will occur at a
lower Reynolds number. Transition can be tripped by a ridge on the surface of the
cylinder. The turbulent boundary layer separates from the cylinder at an angle of
approximately  =+120° measured from the forward stagnation point. The flow
exhibits a return to a coherent periodicity. The Strouhal number becomes

St ~ 0.3 when Re 5 107.

In summary, flow past cylinders with Reynolds numbers in the subcritical
and transcritical regimes are likely to reinforce large amplitude acoustic or body
oscillations. Both these regimes are predictable with a high degree of confidence.
The supercritical regime (2 x 105 < Re < 3 x 106} does have some coherent
alternating vortex shedding pattern but the oscillation is mostly broadband. The
supercritical regime suffers a degree of uncertainty when predicting the modes of
oscillation: this is an artifact of the flow being transitional and thereby highly

dependent on free-stream conditions and cylinder roughness.

9.2 Vortex Formation From Other Bodies

Different bluff bodies are known to shed similarly structured wakes. In all
cases a shear layer separates from both sides of the body. The shear layer rolls up,
producing alternating vortices. The region behind the body in which this occurs
extends several body widths downstream. This region plays an important role in

the strength of the vortices and the frequency at which they are shed.



The basic parameters that control the vortex shedding process are the
magnitude of the negative base pressure coefficient, C, ., and the distance between

the shear layers, d'. The base pressure coefficient is defined as

Py - Pa

Cp = b= Pe
0.5 p. U2 (9-1)

the base pressure, the pressure immediately downstream of the
bluff body,

where Py,

P.. = the pressure in the undisturbed flow,
«~ = the free stream velocity, and
P = the density of the fluid.

The free-stream Reynolds number and Figure 9-2 can be used to determine
C, for various geometries. By applying Bernoulli's equation at the separation point

just outside the boundary layer, the wake velocity
U, =(1-Cy,)Y? U (9-2}
is obtained. The quantity (1 ~ Cy)!/? is usually replaced by K such that
Us = K U , (9-3)
where K is called the base pressure parameter.

The distance separating the shear layers or wake width d' as depicted in
Figure 9-3 is the characteristic length that is common to all bluff bodies. It is a
universal measure of the "bluffness” of the body in that "bluffer" bodies produce
more severe distortion of the flow in the streamwise direction. Figure 9-4 shows

the wake width as a function of the base pressure parameter.

Figure 9-3. Wake Structure of a Bluff Body.
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If the free-stream velocity, Ue , remains unchanged while the body width
dimensions are increased, it seems intuitive that the distance separating the
shear layers d' will increase and so will the base pressure coefficient C,. Since
the base pressure coefficient is simply related to the wake velocity, it follows that
a wake Strouhal number is appropriately defined as

st« = f£d }
Us (9-4)

Roshko? has developed a relationship between St* and K that collapses
measurements from a cylinder, a normal flat plate, and a 90-degree wedge over a
range of Reynolds numbers. These results were later supported by Bearman?® who
transcribed the work of Roshko and other investigators onto a single plot, repro-
duced here as Figure 9-5.
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It is evident from Figure 9-5 that St* = 0.18 is a universal Strouhal number
that spans a range of base pressure coefficients. A departure from St*=0.18 is
observed at pressure coefficients below 1.1. This universal Strouhal number may
be successfully applied over a range of base pressure coefficients, Cb. In

Figure 9-5 the Reynolds number is mostly contained within the suberitical regime.

A procedure for calculating the wake Strouhal number for a bluff body is

as follows:
1. Estimate the value of K from Figure 9-2.
K = {1-Cy'2
2. Use this value and Figure 9-4 to determine d'.
3. Calculate U; from Equation (9-3).

4. Calculate the shedding frequency using Equation (9-4}.



9.3 Prediction of Strouhal Number for Tube Banks In Cross-Flow
9.3.1 Qverview

A heat exchanger is a device that is widely used in turbomachinery to
transfer thermal energy between two or more fluids. The type of heat exchanger
most commonly found in turbomachinery is the cross-flow heat exchanger. In this
exchanger design, gas or fluid is forced across a tube bundle, while another fluid is
used inside the tubes for heating or cooling purposes. The tube banks are a
vibration concern when the cross-flow fluid velocity is high or the design contains
long tubes with small diameters. The tubes may fail either due to fatigue or colli-
sion with neighboring tubes. To identify when such failures will occur, an analysis
is made that considers four important factors affecting vibration: (1) vortex
shedding, (2} turbulent buffeting, (3) acoustic resoriances, and (4) fluid-elastic

whirling referenced to the tube natural frequency.

Figure 9-6 shows a cross-section of a heat exchanger tube bundle. The
emphasis of most theories used to evaluate the potential for vibration problems is

on tube geometrics having in-line and staggered tube arrays.

Consider a tube array exposed to a gradually increasing cross-flow velocity.
The instability shedding excitation frequency. f, . increases with a constant
Strouhal number, until the natural frequency of the tube, f, ., or the acoustic
resonance mode of the enclosure, f,, is reached. When f. approaches f, or f,.
the vortex shedding becomes regular and highly correlated along the spans of
tubes. This so-called "locking-in" condition can be maintained over a considerable
velocity range such that the Strouhal number is no longer considered to be
constant. With a further increase in the velocity, the shedding frequency suddenly
increases to a Strouhal number given by its original value prior to the lock-

ing condition.

The occurrence of a "locking-in" condition inside heat exchangers is a well-
known problem and has led to the formulation of a design methodology. The
accuracy of the technique will vary depending on the heat exchanger geometry
“and flow conditions. For example. the flow in a heat exchanger is usually never
entirely perpendicular to the tubes nor is the flow uniform through the tube
bundle. Sections 9.3.2 and 9.3.3 will discuss the methods to determine the

frequencies for the factors which influence tube vibration.
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9.3.2 Vortex Shedding Excitation Frequency, f.

Vortex shedding excitation in a tube bank is similar to the shedding
process of a solitary cylinder. However, identifiable vortex shedding is often
limited to the first few rows of a tube bank. These rows have an incident flow with
the least amount of contaminating turbulence. Grover and Weaver? have reported
the existence of organized periodic shedding up to the first 15 rows of a tube
array. The periodicity is, of course, greatly enhanced if the shedding instability
frequency coincides with an acoustic resonant mode or a fluidelastic/whirling
instability.

Experimental measurements made by Fitz-Hugh® and Chen® are shown in
Figure 9-7. The independent variable St characterizes the tube layout as shown

previously in Figure 9-6.
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Figurc 9-7. Strouhal Number {St) Versus S, for Tube Banks in Cross-Flow
(see Figure 9-6 for definition of 5,).

Shown in Figure 9-8 is Fitz-Hugh's® collection of the experimental meas-
urements made by a number of investigators collapsed onto a single diagram.
Either Figure 9-7 or 9-8 may be used to estimate the Strouhal number for a
tube bank.
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9.3.3 Turbulent Buffeting Excitation, f,

Deep inside a tube bank, it may be assumed that the flow incident on a row
of tubes is non-uniform. This type of flow is known as turbulent buffeting and is
characterized by a spectrum of frequencies distributed about a dominant
frequency. Owen? developed the following relationship to predict the pre-

dominant frequency f of this spectra
St = (fy, D/U) S5t = 3.05(1-1/St)? + 0.28 (9-5)

where the velocity U is the average flow velocity at the minimum cross-section
between the tubes, U = U. T/(T - D); U is the free-stream velocity; and S) and St
are the spacing parameters as depicted in Figure 9-6. Equation (9-5) only applies

to gases. Data or equations are not yet available for turbulent buffeting frequencies

for liquids.
The physical reasoning behind Equation (9-5) rests in the fact that buffeting

is the source of excitation. This equation has been shown by Paidoussis® to agree
with similar vortex shedding models, suggesting that the predominant peak may

be due to either vortex shedding or buffeting.

9.3.4 Flow-Acoustic Coupling in Tube Arrays

When the frequency of flow periodicity inside the duct coincides with the
acoustic modes of the duct, acoustical coupling may produce pressure amplitudes
as high as 175 dB. However, such resonances will not materialize if the acoustic
damping capacity of the system is sufficient to preclude resonances - the acoustic
damping capacity being traceable to the vortex shedding pattern and its compati-

bility to the duct acoustic modes.9

To determine if the conditions inside the heat exchanger are favorable for
the establishment of transverse acoustical resonances, Ziada et al.10 developed a
resonance parameter that is suitable for in-line and stagger tube arrays. The
principal parameters used in the criterion are: the critical Reynolds number
based on the gap velocity, the spacing parameters, and the acoustical Reynolds
number based on an effective speed of sound, c.; . For in-line and staggered tube

arrays, respectively, the resonance parameters are

G = VRe S ), (9-6)

C(:[fD



G. = {Re [VZS]iST"]T} ( v )
) (2s81-1) cet D/

(9-7)
where Re = Reynolds number,
U = average {low velocity at the minimum cross-section between tubes,

c.r = effective speed of sound which has been shown by Parker!! to be

Ceft -1/2
equal to ki (1+0) ,

¢ = speed of sound,

¢ = solidity ratio, fraction of space occupied by solid bodies such as
tubes,

D = tube diameter,

v = kinernatic viscosity, and

S, 5 = spacing parameters.

Ziadia et al. use a critical Reynolds number based on the maximum gap speed,

since resonance is most likely to occur at the highest speeds.

The dependence of the resonance parameters G; and G, on 512 and
2L/h are shown in Figure 9-9. The parameter 2 L/h, appearing for the
staggered array, represents the ratio between the jet winding around the tubes
(2 L) and the minimum thickness h.

. {t/z = (T-D)/2, t/2<¢g

g , t/2>¢g (9-8)

As the packing density is decreased, 2 L/h increases, and the heat exchanger
becomes more susceptible to resonances. This behavior is clearly depicted in
Figure 9-9.

9.3.5 Tube Natural Frequency, f,

Since there are usually many uncertainties such as the vibration character-
istics of the tube baffle supports and the longitudinal tube stresses associated with

heat exchangers, a precise calculation of the tube's natural frequency is usually
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not feasible. However, an adequate model used to estimate the tube's natural
frequency assumes the tubes are continuous beams that are supported by inter-
mediate baffles. The baffles provide some degree of damping resulting in a natural
frequency

2n W. L4

(9-9)

where D = frequency constant (see Table 9-1),
= modulus of elasticity of tube material,

1 = sectional moment of inertia,
ﬂ dd - df
64 *

= gravitational constant,
L = length of the span, and

W, = effective weight per unit tube length.

Table 9-1

Values of Frequency Constant, D
(Reproduced from Fitz-Hugh?)

End Support Mode
Conditions 1st 2nd 3rd 4th 6th

Both Clamped | 22.4 61.7 120.9 | 199.9 | 298.6

One Clamped, | 15.4 50.0 104.2 § 178.3 | 272.0
One Hinged

Both Hinged 9.9 39.5 88.8 157.9 | 246.7

W, includes the weight of the tube material, W, , the weight of the fluid within the
tube, W;, and the weight of the fluid that oscillates with the tube, W,. The

effective weight is calculated as
We =W, + W + W, (9-10)
where  W; = weight of the tube material per unit length,

Wi = py "_filﬁ . weight of the fluid within the tube per unit length,



Wo = kpo ndé , weight of the fluid that oscillates with the tube per unit

4
length,
d, = inside tube diameter, and
d, = outside tube diameter

The value of k in W, is determined using Figure 9-10. Fitz-Hugh® used a value
of 1.0 when estimating k.

2.0 T T T
| A Staggered
Oin-Line
K - -
1.5 -
1.0 l | l

1.2 1.3 1.4 1.5 1.6
5]

t

Figure 9-10. Experimental Measurement of Hydrodynamic
Inertia Constant. (Reproduced from Chenoweth.'?)

It is a common occurrence in heat exchangers for the span length to vary
between the tube bundles. In the SSME combustion chamber, the injector posts
in the inner rows of the bundle are shorter than those in the outside row. The
value of f, should be calculated for each different span length, using the

appropriate end conditions.

The axial stress of a tube may alter the natural frequency. The correc-

' 2z
fo = fn4/1+§an2 (9-11)

where ', = stressed frequency,

tion is!3

£, unstressed frequency,

L. = length of spa,

e
It

axial load, negative if compressed, positive if tensile,
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P =85« A,
S = axial stress, and

A = cross-section area of the tube, metal only.

The axial stress depends on the construction and installation of the tubes.

For heat exchangers that have a U-bend, the longest bend length should be
used for L in Equation (9-9). The natural frequency should then be adjusted for

in- and out-of-plane frequencies as follows:13

1.985 f, (9-12a)

In Plane f,

Out Plane f, = 0.829f, (9-12Db)

These equations assume no intermediate supports.

The natural frequency for finned tube array heat exchangers similar to the
one sketched in Figure 9-11 is obtained by using Equation {(9-9) and making the

following substitutions

df-dj
Il = @ e —Af -
64 {9-13)
where: de = do + 1.08 (dro - dud) (9-14)
and d, = tube diameter at root of fin,
dy = tube inside diameter under finned section, and
d, = tube outside diameter.

The actual weight of the tube, shown in Figure 9-11, should be used for the
weight of the tube material, W;. A value of k equal to 1.0 and the overall fin

diameter should be used when calculating W, .

AT —
T —

Figure 9-11. Tube Nomenclature.




0.3.6 Fluid-Elastic Instabilities in Tube Arrays

In a tube bank there are flow mechanisms, in conjunction with the elastic
vibration of tubes, that are unrelated to the instabilities occurring in tube banks
having ridge tubes. These mechanisms, commonly referred to as fluid-elastic
instabilities, have amplitudes large enough to cause tubes crashing into one
another. The basic objective is to predict the critical flow velocity for this type
of instability.

There are many models that may be used to predict the onset velocity of
fluid-elastic instabilities and a discussion of these theories, as well as a classifi-
cation of the more recent works, is found in Chen!4 and Paidoussis.!5 In a more
recent article by Paidoussis and Price,!6 a discussion on the mechanisms and how
they may be synthesized into two broad categories may be found. In their article,
Paidoussis and Price describe this mechanism as involving negative damping and a
wake flutter mechanism. Paidoussis and Price predictions can be made of the
critical velocity for the onset of fluid elasticity inside a tube row by synthesizing
these two basic mechanisms. The onset condition is expressed in terms of the
dimensionless parameter U,y /f, D in which Ug, is the value of the flow velocity
at which the array goes unstable, f, is the natural frequency of the tube in vacuum,
and D is the tube diameter. The fluid-elasticity is then controlled by the damping
forces, and is shown to be expressed in terms of md , where § is the in-vacuum

logarithmic decrement of damping and m is the tube mass.

9.3.7 Heat Exchanger Tube Bundle Vibration Prediction Procedure

The following procedure compares the fluid dynamic forcing frequencies to
that of the acoustic resonator modes of the enclosure and the natural frequency of
the tubes. Similar procedures have successfully predicted 80 percent'® of the

existing heat exchanger flow-induced vibrations. The steps are as follows:

1. Calculate the acoustic resonances of the enclosure, as described in

Chapter 4 of this handbook. The simplest calculation that may apply is

fa = DNCefl

4 L(-ﬂ . (9- 1 5)
where f, = acoustic frequency,
n = mode number, and



0
]
=

(1 + o).

|

¢ = speed of sound,
¢ = fraction of space occupied by solid bodies, and
L = effective heat exchanger enclosure dimension.

2. Estimate the resonance parameter G; or Gg. Use 1.2 times the

maximum projected flow speed as an average flow speed between the
tubes. If the resonance parameter lies in a non-resonant region (see
Figure 9-9), resonance will not occur at any of the lower speeds. Other-
wise, compute the ratios of vortex shedding and turbulent buffeting
frequencies to the acoustic frequency. If the fluid excitation frequency
falls within the following limits, then the acoustic resonance may
enhance fluid unsteadiness.

08 < fe < 1.2
fa (9-16a)

08 < b < 1.2
f. (9-16b)

. Compute the ratio of the fluid excitation frequency to the natural
frequency of the tube. If either of the following conditions is satisfied,
the fluid unsteadiness may cause the tubes to undergo fluid—-elastic

vibration.

0.5 < fe < 1.5
fn {9-17a)

05 < v 15
f, (9-17b)
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CHAPTER 10
SWIRLING FLOWS

by Michael J. Lucas
Wyle Laboratories

There are a wide variety of configurations of flow machinery that generate
internal swirling flows, and the instabilities of these flows are of considerable
practical importance. These flows are possible whenever there is a combination
of an axial (streamwise) and radial component of velocity. Engine components
that are known to inject a swirl into the streamwise axial component of flow are
pump inlet and exit chambers, cooling air cavities, combustion chambers, and
sharp radial turns in the plumbing. A problem inherent in the design of these
components is collecting the axial flow and redirecting it from or towards the
main rotor axis. This action can introduce a swirling vortex that at some location
downstream causes a transition or breakdown into a new flow state. The
instabilities present in a swirling flow and the vortex breakdown phenomenon are

of central importance in turbomachinery.

Section 10.1 introduces the basic aspects of vortex breakdown. Sec-
tions 10.2 through 10.4 contain a discussion on the behavior of swirling flows in
various practical devices. The devices described in these sections are a vortex
whistle, a vortex tube, and a ring inlet and exit chamber. The important feature
common to all of these configurations is the dependence of pure-tone noise on

flow rate.

10.1 Vortex Breakdown

Swirling flow is susceptible to a process known in the literature as vortex
breakdown. This involves the rapid transformation of the flow from a highly
organized, undisturbed state of swiri to a large-scale, highly turbulent flow region.
It is important to realize that the transition process can lead to surges or large-
scale fluctuations in the downstream tube. Also, this process of vortex breakdown

can occur irrespective of the type of inlet and outlet flow restrictions.

A number of laboratory tests! on vortex flows have found that the pre-
dominant parameter responsible for determining the onset of vortex breakdown is

the ratio of the swirl velocity V, to the axial velocity u. Although the swirl and
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axial velocity distribution vary with radius, representative values of each of these
velocities over the cross-section of the vortex are typically chosen to characterize
the flow. In essence, when the value of the characteristic swirl velocity becomes
sufficiently large relative to the characteristic axial velocity, then the flow
undergoes vortex breakdown. Upstream of the location of vortex breakdown, the
distribution of axial streamwise velocity is a jet-like distribution, whereas
downstream of the vortex breakdown the distribution of axial velocity takes on a
wave-like form. In the region of vortex breakdown, both organized and broadband
fluctuations are in the form of a helical instability similar to that observed for the
higher order (m =1, 2, . . .) modes of a jet. Thus the possibility exists for vortex
breakdown to excite the resonant acoustic modes of a flow system and produce

vibrations on the structural components.

Although the flow downstream of vortex breakdown can exhibit unstable
and turbulent behavior, the mechanism for producing the onset of breakdown is
still a source of controversy. There are two basic views: the first is that break-
down involves a phenomenon similar to a hydraulic jump, involving the abrupt
transformation from a supercritical to a subcritical condition; the second view is
that it is driven by a phenomenon of hydrodynamic instability. In general, the

former explanation seems to have wider acceptance.

Overviews and assessments of the mechanisms leading to vortex breakdown,
both for external and internal flow configurations, are given in the reviews of
Leibovich? and Escudier.!-® This chapter reviews the different flow devices used to
study swirling flows and vortex breakdown. Where possible, prediction schemes

are provided for estimating the resonance frequencies inside these geometries.

10.2 Vortex Whistles

Using a device resembling a whistle, Vonnegut? produced a pure-tone noise
from a swirling flow. The whistle, as sketched in Figure 10-1a, has a tangential
inlet swirl generator whose diameter, D, is greater than the inlet diameter, d, ,
and greater than the exit tube diameter, d,. Flow through the tangential inlet
genecrated a pure-tone noise whose frequency increased proportionally with the

flow rate.
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Measurements of frequency of Vonnegut's whistle are plotted against flow
rate in Figure 10-2. In Figure 10-3, the frequency is plotted against the quantity
[(P,-P;)/P,]""?, where P, is the entering pressure and P, is the exhaust

pressure. The relationship to estimate the frequency is given by

1/2
f=0o5 [plplpz} (10-1)
where ¢ = speed of sound,
D = diameter of vortex whistle,
P, = entering pressure, and
P, = exhaust pressure.

The value of o is a constant less than one. This factor accounts for

frictional losses. If the fluid can be assumed inviscid. as in air at a sufficiently high
Reynolds number, a value of one should be used for «.

A comparison of data taken by Vonnegutt and Channuad5¢ for selected
values of L/d is shown in Figure 10-4. The parameters used to characterize the
whistle are the mean exit velocity U, the mean diameter of the downstream
tube d, and the frequency of oscillation f. Vonnegut's measurements were made
for an L/d ratio of 2.2 and a Reynolds number range of 6,000 to 25,000. His
results, calculated from Figure 10-2, are shown in the figure as the shaded area.
Channuad measurements were made in air for a Reynolds number range of 2,000
to 7,000. The whistle constructed by Channuad has a downstream tube that could
be varied both in tube length L and diameter d .

The measurements made by Vonnegut show only fair agreement with those
of Channuad. The Strouhal number reported by Vonnegut for air is between
1.2 and 1.5, while the measurements made by Channuad indicate a higher value.
The decrease in Strouhal number with increasing L/d ratio, reported by
Channuad, indicate a viscous drag reduction in the downstream tube and possibly
related to the variable o reported by Vonnegut in Equation (10-1).

Both Vonnegut and Chanaud observed that when water is injected into the
whistle, air bubbles in the water spiral around the exit tube axis at about the same
frequency as that of the sound frequency. These observations suggest that a

central mechanism responsible for the sound generation is the vortex breakdown
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in the downstream tube. If the sound frequency is simply related to the fluid
angular velocity, then the Strouha! number represents the ratio of the swirl

velocity to the axial velocity

T U, B n Ug - n Us (10-2)

1l

d,/2, and

fluid angular velocity.

where I,
Vi

This simple relationship to estimate the sound frequency was shown to provide a

reasonable estimate, provided L/d, is less than 2.

10.3 Vortex Tubes

Figure 10-1b shows a sketch of a vortex tube. This device is similar to the
vortex whistle in that when air is injected through the tangential tube into a
cylindrical container a pure-tone noise is emitted whose frequency is proportional
to the flow rate of the swirl. The presence of the diaphragm shown in the figure
separates the air flow into two streams. The colder air escapes through the hole
in the diaphragm, while the hotter air is exhausted through the other end of
the tube.

The discovery of the vortex tube led to numerous experimental investiga-
tions by Ranque,” Hilsch,8 and others to evaluate the nature of an observed total
temperature separation that occurred inside the cylindrical tube. At one time it
was thought that the vortex tube might be used as an efficient cooling device. In
fact, Vonnegut* was led to his findings on the vortex whistle while working on the
application of the Ranque-Hilsch vortex tube effect. Vonnegut observed tempera-
ture differences as high as 50°C between the center of the vortex core and the

outer rotational fluid.

Kurosaka? suggested that it is acoustic streaming by the vortex whistle
which produces the Ranque-Hilsch effect. Acoustic streaming is the mean motion
in a fluid generated by sound. It is forced by the Reynolds stresses, defined as the
mean momentum flux due to the acoustic waves.!®© Kurosaka explains that when
the whistle is inaudible, the steady-state tangential velocity distribution in the

radial direction is in the form of a free vortex and the steady-state temperature is
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uniform. But when the whistle is audible, the velocity profile transforms to that of
a forced vortex and the temperature distribution spontaneously separates into a

hotter stream near the outer wall and a colder stream near the axial centerline.

Kurosaka® developed a frequency swirl relationship from which the first

harmonic of the vortex whistle is determined

"2t 252 D T (10-3)

In this equation, T is the circulation of the forced vortex and may be estimated by
assuming that the value of the circulation around the tube periphery is equal to
that around the circumference at the exit of the swirl generator; r, is the radius
of the tube from which the hot air is expelled. Figure 10-5 shows the calculated
frequency together with the measured values. This analysis shows that the
frequency of the swirling fluid is the first harmonic of the vortex whistle. The
disagreement between the measured values and those predicted are explained by

viscous losses in the cylindrical tube.

10.4 Ring Inlet and Exit Chambers

Merkli and Escudier!! developed a simplified axial flow model to simulate
the behavior of flow instabilities inside axial compressors, annular cascades, and
turbine inlets. Figure 10-1c shows a sketch of a ring inlet chamber. Ring inlet
chambers are used to distribute the flow from an inlet duct or pipe onto the first

blade row of a compressor or turbine.

The geometry shown in Figure 10-1c is idealized; in practice the ring
cross-section may be non-circular and the axial flow complicated by blading in the
annular passage. These flow devices can be expected to induce turbulences that
may affect the nature of the unsteadiness inside the ring chamber and the
frequency of oscillation. With the exception of the presence of the center body
(see Figure 10-1c), the inlet-chamber arrangement is quite similar to the vortex
whistle (see Figure 10-1a).

Figure 10-6a shows the variation of Strouhal number with Reynolds number
for a ring inlet chamber. Above a critical Reynolds number of 1.2 x105, the

frequency spectrum was observed to increase steadily with mass flow rate. As
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shown in the figure, the Strouhal number (St = f%) has a constant value of 1.2 over

the Reynolds number range of 1.2 x 105 < Re < 2.25 x 105. At lower values of
Reynolds number, the Strouhal number was observed to steadily decrease as
Reynolds number decreased. Merkli used Re=2tU/v to define Reynolds
number, where t is the annulus width and U is the average velocity in

the annulus.

Merkli and Escudier observed that the ring chamber had two entirely
different flow regimes. At flow rates below a critical Reynolds number the
incoming flow splits symmetrically into two branches, which explains the
observed decrease in Strouhal number below Re = 1.2 x 105. At flow rates above
the critical Reynolds number, the flow exhibited a swirling motion and in many

respects showed similar features to the vortex whistle.

A cut-away diagram of the ring exit chamber model used by Merkli and
Escudier is shown in Figure 10-1d.12 These experiments were carried out for
values of t/R varying from 0.16 to 0.58 and a Reynolds number between
1 x 10% and 6 x 104

Flow visualization of the ring exit chamber revealed the existence of a
strong vortex. The spatial structure resembled that of a helix wrapped around the
ring axis. The helix shape is a result of the coriolis forces induced in the swirl as
it bends around the ring. The two ends of the vortex core do not join; rather both
ends turn into the end of the exit tube, as shown in Figure 10-7. This fact was
confirmed by pressure measurements made at the chamber exit. The vortex is
not stable but oscillates periodically about the central axis of the ring chamber.

Figure 10-6b shows the variation of Strouhal number with Reynolds number
for the ring exit chamber. When the Reynolds number exceeds 10°, the Strouhal
number (St = f—duﬂl is equal to 0.052, is independent of the t/R ratio, and is only
weakly dependent on the Reynolds number. The frequency of oscillation is
unaffected with variations in the annulus width. The most notable change in the
flow structure is that the amplitude of the helix increases or decreases depending
upon the selection of t/R. Also, the first harmonic is very well defined and

harmonics up to the sixth order are detectable.
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Example Calculation

As an example, consider the model of a ring exit chamber investigated by
Merkli and Escudier.!1-12.13 The diameter of the model, D, is reported to be
135 mm. The inlet and outlet pipes have a diameter, d,, of 55 mm. Suppose the
ring chamber and the exit tube are represented by a T-tube with the two top
branches wrapped around a cylinder and joined together at the two ends. Using
the geometric data from the Merkli and Escudier model, the T-tube dimensions
become 1, = 209 mm, L, = 185 mm, and r = 27.5 mm (see Figure 4-2). The value of
L, is determined assuming 2 {L, + r) = nD.

From the previous section, it was shown that the Strouhal number for a ring
exit chamber is equal to 0.052. Assuming the speed of sound in the gas is

341 m/sec, the frequency for flow instabilities is
f = 322 x (Mach number) (10-4)

To calculate the acoustic resonance inside the T-tube, use Equa-
tions (4-12a) and (4-23). The effective lengths appearing in these equations are
calculated from Equations (4-19), (4-20), and (4-24). Table 10-1 shows the

results from these calculations.
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A comparison of measured pressure spectra at different mass flow rates
appears in Figure 10-8. The pressure spectra contain pressure peaks due to the
flow instability and peaks due to the acoustic resonance characteristics of the
model. The pressure peaks due to flow instabilities increase in frequency with
flow rate and are in agreement with Equation (10-4). The calculated acoustic
resonance frequencies, drawn in the figure, were determined by Merkli and are in

good agreement with the resonance frequencies presented in Table 10-1.

Table 10-1

Calculated Resonance Frequencies
For the Ring Exit Chamber

Top of T-Tube Stem
Equation (4-12a) | Equation (4-23)
1382 146
2304 591
a02
1315
1671
2033
2441
2755
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CHAPTER 11
IMPINGING SHEAR LAYERS

by Michael J. Lucas
Wyle Laboratories

The consequence of a shear layer impinging on a downstream obstacle or
edge can be the generation of a highly coherent disturbance. Impinging shear
layers are recognized as a primary cause of unsteady pressure loading and noise
radiation inside turbomachinery. Flow paths inside turbomachinery associated
with this type of noise production include: the flow exchange between nozzles
and turbines: the flow exchange between impellers and diffusers; the movement
of fuel or lubricant over engine cavities; and the impinging wake generated by flow

past bluff bodies as from struts and turning vanes on downstream obstacles.

In this chapter, the problem of a shear layer impinging on a downstream
surface or edge will be presented for selected geometries. Section 11.1 provides
an overview of the flow mechanics for basic shear layer impingement geometries.
Section 11.2 describes the models for estimating the most highly amplified dis-
turbance frequencies for a jet stream impinging on: an edge (classical edgetones),
a perpendicular flat plate, and a perpendicular flat plate with a hole in its center.
Section 11.3 contains acoustic and hydrodynamic models for estimating the

disturbance frequency generated from cavity oscillations.

11.1 Overview

A summary of the types of shear layer impingement as categorized by
Rockwell and Naudascher! is shown in Figure 11-1. The figure illustrates a dozen
examples, classified by shear layer type. The three categories are planar jets,
axisymmetric jets, and planar and axisymmetric mixing layers. The feature
common to all of these is the pressure-phase relationship between the dis-
turbance generated by the organized vorticity impinging on a downstream surface
or edge, and its pressure convergence upstream in the vicinity of the separation
edge. This pressure feedback selectively amplifies the shear layer, causing the
flow fluctuations to occur within a narrowband of frequencies, that produce

preferred “"stages” or modes of oscillation.
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Without the edge, the flows shown in Figure 11-1 may still exhibit a natural
feedback process during vortex breakdown as shown in Figure 11-2. In a non-
impinging flow, the downstream unsteadiness acts as an origin of upstream
influences. An "apparent” length scale I is used to relate the vortex formation and
pairing in a free shear layer. In a typical shear layer there might be a number of
values for I. The consequence of the apparent length scale is the ladder-like
change in the frequency (see Figure 11-2) that is observed when the velocity is

increased. The mathematical description of this frequency-controlled behavior is

wrest (11-1)
where | = apparent length scale,
U. = phase speed of the disturbance.,
¢ = speed of sound,
f = frequency, and
n = stage of oscillation.

The stage of oscillation, represented by n/f in Equation (11-1), is the period of
shear-layer oscillation or vortex shedding. The successive ladder-like jumps
shown in Figure 11-2 are accounted for by higher values of n .

The events that lead to the establishment of a highly amplified disturbance
from an impinging shear layer are described in the context of the edgetone
generator. The essential features of an edgetone generator are shown in
Figure 11-3. The feedback process is explained as: (1) the initiation, at the jet
exit, of a disturbance wave; (2) the growth and propagation of the disturbance in
the streamwise direction; (3) the impingement of the oscillating jet on an edge;
and (4} the subsequent generation near the impingement point of an acoustic

disturbance which is fed back to the sensitive region of the jet near the exit.

At low Mach numbers, nearly all flows of interest satisfy the criteria that the
impingement distance, L, divided by the acoustic wavelength, A, , is much less
than unity (L/A, << 1). This means that the upstream source lies in the non-
propagating region. That is, the disturbances arising from the impingement edge
are instantaneously felt at all upstream locations. For nearly all conditions in
liquids, the condition L/A, <<1 is satisfied and the propagation of the disturbance
is purely hydrodynamic.
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In the case of higher speed flows, for which the acoustical wavelength is
relatively short, the upstream region can lie in the propagating region of the
. feedback disturbance. In this situation, the acoustic speeds become important
when evaluating the delay time between impingement and the location of the
shear-layer separation. Also, under these conditions the strength of the upstream
influence is considerably larger than the case where the acoustic wavelength is

very long.

In the case of an impinging flow, Blake® makes the following elementary
description which applies to most of the frequency prediction models found in the
literature. Consider the motion of a free shear layer. As described in Chapter 7,
the fluctuating component of velocity for a spatially growing disturbance can be

written as

Tk} = v eu* elmxoV  0gy<L (11-2)

It

where V fluctuating component of vertical velocity:

imaginary part of wave number {amplification factor}; and

£
[

real part of wave number (equal to w/c).

£
I
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At the downstream edge the vertical component of velocity becomes

VL) = ¥ eul gllrl-o0 (11-3)

Coupling is optimum when the downstream hydrodynamic disturbance wavelength
is n/2 out of phase with the upstream edge. The phase relationship may be

written as

ool =2nnr -~ /2 , n=1,23.... (11-4)

By substituting o, = 2rf/U, into the above expression, the preferred frequencies

fn=%‘—'(n——i), n=123... (11-5)

are derived. In Equation (11-5), n is an integer and is sometimes referred to as
the mode or stage of oscillation. This simple model ignores frequency synchroni-

zation that may arise from other acoustic resonators.

This relationship is sometimes modified to account for a phase lag that can
occur between the encounter of the vortex sheet with the edge and its pressure
response to the edge. The lag in phase is denoted by ¢ and is potentially
significant for compressible flows. The incompressible limit is ¢ = 0. The general

expression for this condition may be written as

arL+¢=2n(nii). n=1223... (11-6)

Blake shows that this relationship written in terms of a Strouhal number is

flg=g,(ul_i) = 1,2 3
Um Um n 4 2R N n ' ] LI [11'7)

where L is the impingement length scale, U, is mean speed of the flow, and
U, is the phase speed of the disturbance.

11.2 Impinging Flows From Jets

This section contains a discussion on the models that may be used to
predict the most highly amplified disturbances for a Jjet stream that impinges on
an edge, Section 11.2.1; a plate, Section 11.2.2: and a plate with a hole in its
center, Section 11.2.3.
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11.2.1  Jet-Edge Configuration

Sound levels produced by a jet-edge configuration, referred to hereafter as
"edgetone”, was first recorded by Sondhaus* in 1854. Many investigations and
theories have been proposed to explain the cause of this sound. Powell® provided
the first rigorous theoretical explanation on the nature of edgetone sound
production. He demonstrated that the leading edge can be treated as an acoustic
dipole source which disturbs the jet and that the instability characteristics are

dependent on the Reynolds number, the Strouhal number, and the jet-to-edge

separation distance,

Oscillations inside organ pipes and wind instruments have long been
associated with the phenomenon of edgetones. This association is not entirely
correct since jet edge interactions and their resultant forces are not essential to
the production of sound. The oscillation in an organ pipe, for instance, is due to
the modulation of the jet-profile caused by a feedback from the standing wave field
inside the pipe. In contrast, the jet-edge interactions are known to play a major

role when the jet-to-resonator coupling is weak.

The non-dimensional variables important to the edgetone phenomenon are:
(1} the Reynolds number, Re = U, D,/v, based on U, , the mean velocity in the
nozzle; (2) the Strouhal number, St =1D;/v, that introduces the frequency f:
(3) the distance separating the jet nozzle and the leading edge divided by the
nozzle width, L/D, ; (4) the disturbance amplitudes, such as @ and ¥ , which are
expressed in some suitable non-dimensional form; and (5) the velocity profile at

the jet exit.

The frequency dependence on jet efflux speed and impingement length of
an edgetone generator are shown in Figure 11-4. The frequency increases when
either the velocity of the jet is increased or the distance separating the jet exit

and the leading edge is decreased.

Jumps in frequency separate the stages in an edgetone generator.
Figure 11-4a shows that as the frequency progressively increases with increasing
Reynolds number, a critical Reynolds number is reached where the frequency
jumps up from the original operation curve, referred to as stage 1, to a new curve,
stage 2. As the Reynolds number is subsequently reduced, the downward

frequency jumps from stage 2 to stage 1 with the transition occurring at a lower
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Reynolds number than the jump-up. This results in a hysteresis region being
formed. Figure 11-4b shows a similar trend in frequency as the impingement

length is increased and decreased.

At a fixed edge distance there is a minimum Reynolds number below which
edgetones disappear. Conversely, at a fixed Reynolds number there is a minimum
slit-to-edge distance at which sound production begins. These minima are

indicated on Figure 11-4.

11.2.1.1 Survey of Experimental Investigations

A survey of experimental edgetone measurements with planar and axi-
symmetric jets is shown in Table 11-1. Most of the measurements have been
made for planar jets in air with a nozzle width of 1 mm. The impingement edge
for most of the studies has been a wedge; in a few instances a cylinder was
substituted for the wedge. In many of the lower Reynolds number studies
(Re < 2000), the velocity profile at the nozzle exit is fully developed and parabolic
in shape. These profiles are very similar to the ones modeled by Bickley” and

Sato,8 which were discussed in Chapter 7.

Figure 11-5 shows curves of neutral stability that were developed by Powell
and Unfried.!® The region of edgetone activity lies below the neutral stability
curves. It appears from the figure that edgetones would not exist for a Reynolds
number below 50 and above 3000. In practice, the creation of edgetones for
Reynolds below 50 and above 3000 are not always feasible. An extensive review
article by Powell!'® describes the instabilities associated with higher Reynolds
number jets. Recently, Umeda et al.? and Krothapalli and Horne!4 measured high-
speed edgetones at Mach numbers ranging between 0.2 and 0.8 both in an

axisymmetric and a planar jet.

Figure 11-6 shows measurements made by Powell® of Strouhal number
versus Reynolds number of a planar jet with a nozzle width of 1 mm. In this figure
the velocity is the mean velocity of the jet and the wedge has an included angle of
30 degrees. Lucas and Rockwelll® showed that due to the rapid non-linear
distortion of the shear layer the Strouhal number will retain a primary frequency
of B and will exhibit as many as seven components that are sums and differences

of Band 1/3 B. Possible relationships are
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55 = B+2p

8= p+b

Ip=28+2P

11.2.1.2 Survey of Edgetone Frequency Prediction Models

Brown2® made experimental measurements of a } mm orifice width planar
jet impinging on a wedge with an included angle of 20 degrees. Brown suggested

the relationship
f = 0.466 o (U, - 40) {1/L - 0.07) (11-9}

1}

where Up
L
o

mean velocity in the nozzle;

distance from the slit to the edge of the wedge: and
1.0. 2.3, 3.8, and 5.4 for stages 1, 2, 3, and 4, respectively.

Equation (11-9) assumes cgs units and is limited to the range of Strouhal numbers
0.035 < fL/U < 0.15 (11-10)

Lenihan and Richardson!3 later revised this formula using a 1.9 mm width

jet impinging on a cylinder 0.47 mm in diameter. Their formula is
f=0.466 a U, (1/L - 0.07) {11-11)

where o = 1.0, 2.7, 3.8, 5.4, 7.2, and 9.2 for stages 1 through 6, respectively. In
Equation (11-11), the values of o remain the same as in Equation (11-9), except
that two additional values for o (7.2 and 9.2) have been added to the series given

by Brown. Also, Lenihan and Richardson suggest the value of 2.7, instead of 2.3,
for the value of o in the second stage.

Curle?! developed a semi-empirical theory based on the growth of discrete
vortices on either side of a planar jet. From Brown's flow visualization2© Curle
deduced the ratio of the impingement length, L, to wavelength is equal to
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(n + 1/4), where n is an integer. Next, Curle combined the expression for the
convective velocity from Savic2? with the experimental results of Brown to form

the relationship

f = 0.5 Um(n+l/4 - 1 )

L 30D {11-12)

which is valid only when L/D;is 210. Curle's observation that the wavelength is
one-quarter out of phase with the vortices shed from the nozzle lip incorporated

the overall concept of disturbance feedback.

Nyborg?3 cast the equation of motion for a line of unconnected particles
traveling in a jet-edge system. He considered the jet to be infinitesimally thin and

the shape of the jet centerline to be
t
y{t) = I t-1 g[L-x0)] ¢[y®]dr (11-13)
t-8o

where §, = the time required for a particle to travel from the nozzle to the edge,
X = particle horizontal distance measured from the nozzle,

y = vertical distance of the thin jet stream as measured from the jet
centerline,

t = time,
(t-1) = time particle left orifice and is at distance x,

g = function that describes the dependence on distance from particle
to edge,
¢ = instantaneous vertical displacement y of the free end, and

L = distance from the slit to the edge of the wedge.

Nyborg's theory states that the particles move in the thin jet stream from
the nozzle to the edge with a prescribed velocity u(x). While the vertical
acceleration of the particle is dependent upon two quantities: g[L-x] and ¢[y] .

Nyborg assumed an elementary form for g and ¢ to be

glL-x]=1, O<(L-xI<L (11-14)
B. y<0
w- {2

In Equation (11-14), g represents the vertical force acting on the jet at any instant
and is the same at all points in the region O <x < L. ¢ is equal to B, the shear layer

amplitude, whenever y is negative; and -B when y is positive. Substitution of these
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functions into Nyborg's integral equation gives for the shear-layer frequency the
relationship

nm+ 12, n=135... (11-15)

f, = L
25,
where the value of n is an odd integer. The determination of the value of 3§,
requires knowledge of u(x) . which is generally not available.

Tabulated in Table 11-2 are the ratios of frequencies between stages. Since
the ratios between frequencies of the different stages are independent of u(x),
Nyborg's and Brown's predictions are shown in the table for comparison. The

values of n used for Nyborg's formula 1, 3. 5, and 7 for the observed stages of 1, 2,

3, and 4.
Table 11-2

Shear Layer Frequencies for Nyborg?? and Brown?? Models

Stage Nyborg | Brown Percent
Number
m n £ /1, f /f, Difference
1 1 1.00 1.0 0%
2 3 2.44 2.3 5.7%
3 5 3.86 3.8 1.6%
a 7 5.29 5.4 2.1%

Powell® expressed Lighthill's equation for aerodynamic sound production in
a form in which the edge is represented as a distribution of dipole sources and the
acoustic pressure field surrounding the edge is directly related to the distribution
of sources. Powell's formula is suitable for estimating the strength of the pressure

and velocity. First, the pressure in the field surrounding the edge at a distance x

is given by

x) = _1 ioFs 1+2nix/h cosBe i (ot - kx 1-
plx) yetie el sy xp [i( )] (11-16)

where the value of 8 is the angle between the plane perpendicular to the jet
stream and the point of observation. F, is the amplitude of the fluctuating lift

force at the edge. An upper limit for this force is given by Powell to be
Fo = 5 po U3 bDy (11-17)

where Dy is the thickness of the jet at the nozzle exit and b is the width of the jet.
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When the distance between the nozzle and the edge considerably exceeds
the greater dimension (b) of the rectangular orifice (L/b >> 1), the induced velocity
field at the orifice, due to the vortex action near the wedge, is given by Powell as

_ 1 Fo eimt
Yo = Zg(impoﬁJ' (11-18)

It is this situation for which the action at the orifice is like that of a point force,
even though the nozzle is in the hydrodynamic near field (L/A << 1).

If, on the other hand, the edge is very close to the nozzle, then the action at
the nozzle is more like that of a line dipole of force per unit length. In this case

the induced velocity becomes

_ 1 Fo elot
Uo = o (% : (11-19)

iwp,L?b

In both situations the separation region near the nozzle is the location at
which control of the jet motion is established. The frequency at which this
motion occurs has to be taken at the eigenvalues of (n + 1/4} where n is the stage
number in Brown's terminology. According to Powell, the time required to

establish n cycles of motion between the nozzle and the edge is

T = L
Ue {11-20)

where U, is the hydrodynamic convective wave speed of the disturbance. The

frequency then becomes

f=U(n+l) (11-21)

This may be cast in terms of the Strouhal number as

St = (g_m) (%) (n+d). (11-22)

11.2.2 Jet—Plate Configuration

This section describes for a jet-plate configuration: (1) the source of the
pressure fluctuations, {(2) the conditions under which a resonant impinging jet is
capable of producing tonal noise, and (3)a prediction methodology which is

suitable for estimating the frequency of the jet tone.
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High levels of pure-tone noise can be generated when the flow of an
axisymmetric jet impinges on a flat plate at a high subsonic speed. The nozzle-to-
plate separation distance relates to the creation of a pressure disturbance
upstream in the near field which forces, with sufficiently large amplitude, the
growth of a shear layer at the nozzle exit. Under these conditions, the jet stream
is in a resonant state because the upstream wave has become phased-locked with
the wave traveling downstream. The turbulent nature of the jet becomes highly
coherent and almost periodic. When the jet is in resonance, the jet stream will
produce excessive pressure fluctuations at the surface of the plate. It will also
produce a pressure disturbance that is capable of exciting acoustic resonances if

the jet were enclosed in a cavity, as is often the situation inside turbomachinery.

The source of pressure loading on the plate is due to an instability process
referred to as collective interaction.2* Figure 11-7 illustrates the essential features
of a collective interaction. The plate, not shown in the figure, is located down-
stream from the nozzle exit. The Mach number is greater than 0.7 and the L/D,
ratio is less than 0.75. Shear layer vortices emerge from the nozzle exit with a
wavelength of a non-impinging jet. Farther downstream from the nozzle exit the
shear layer vortices undergo rapid merging and large-scale coherent structures
are created. The merging of the vortex structures is so rapid that it is not likely
due to the vortex pairing process as observed in a free jet. The merging of
coherent structures is attributed to collective interaction which is characterized

by a sharp decrease in frequency and a rapid shear layer growth.

The evolution of the shear layer vortices from the nozzle exit is consistent
with the prediction of a free jet. The vortex shedding frequency has a Strouhal
number (St ={D,/U,) that ranges between 3 and 5 and is observed to increase
with the square root of the Mach number. These observations agree with
theoretical predictions made by Michalke25 for the jet's initial instability

frequencies.

Farther downstream from the nozzle exit, at 1.3 nozzle diameters, the jet
transitions to a low-frequency disturbance. The range of Strouhal number of the
large-scale structure is reduced to 0.3 < St < 0.4, which is almost a tenfold

decrease from the shear layer instability measured near the nozzle exit.
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Nozzle Lip

Figure 11-7. Collective Interaction. (Reproduced from Ho and Nosseir.?4)
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Figure 11-8. Noise-Generation Mechanisms in an Impinging Jet.
(Reproduced from Nosseir and Ho.25)
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The high-frequency pressure disturbance associated with the jet instability
cannot follow the same acoustic path to the far field as the large coherent
structures simply because the instability waves have lost their identity before they
have reached the plate. In fact, Nosseir and Ho?6 dentified two separate noise-
generating mechanisms, shown in Figiire 11-8, that propagate to the far field via
two separate paths. One of the acoustic sources is due to vortex shedding,
pairing, and their subsequent convection. The other acoustic source is caused by
the impingement of the large-scale structures. Most of the far-field pressure
disturbance is not attributed to the former acoustic source; rather the primary

noise source is the noise generated by vortex impingement at the plate.

Figures 11-9a and 11-9b are the raw pressure signal and power spectrum
measured at 0.13 and 1.31 diameters downstream from the exit of a resonating
jet. It is seen here that the low-frequency pressure signal has a superimposed
high-frequency shedding component. The low-frequency component that domi-
nates the pressure signal illustrates the importance of the vortex impingement at

the plate and its subsequent upstream influence.

Figure 11-9c compares far-field power spectrum measurements made at
several nozzle-to-plate separation distances. These measurements were made by
Marsh?7 using a circular air jet (1.5 inches diameter) with a Mach number of 0.66.

From Figure 11-9, the following trends in the power spectrum are noted:

e The frequency of peak SPL decreases with increasing plate separation

distance;

« The shape of the spectrum changes from a pronounced peak to a very

broad peak with increasing plate separation distance; and

e The magnitude of the peak SPL decreases by 24 dB when the plate is

removed.

Not shown in Figure 11-9 is the variation of the overall sound power level
with separation distance. Marsh?? observed that the sound power increased
rapidly as the separation distance decreased. At a nozzle-to-plate distance of two
diameters the overall sound power level was found to be 10 dB greater than that

produced when the plate is removed.

The dependence of Stroubal number on Mach number for both an

impinging jet and free jet is shown in Figure 11-10. It is seen here that near the
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(a} Near-Field Pressure Signals.
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Figure 11-9. Radiation From an Impinging Jet Operated in Resonance.
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nozzle exit at Mach numbers below 0.6 the Strouhal number wave ranges between
3 and 5 and the presence of the plate does not change the initial instability fre-
quency. When the Mach number is increased, the impinging jet becomes
resonant and exhibits large coherent structures with a Strouhal number between
0.3 and 0.4 as reported by Marsh2? and Ho & Nosseir.24 The vertical bars in
Figure 11-10 represent the frequency variations observed with different plate
locations. Finally, this figure illustrates that the upstream pressure feedback has
sufficient intensity to impact the vortex shedding and interaction process only

when the Mach number exceeds 0.6.

Figure 11-11a shows the variation of resonance frequency versus separation
distance, and Figure 11-11b shows the same frequencies plotted according to
their stage number. In Figure 11-11a the Strouhal number decreases with
increasing nozzle-to-plate separation distance until it reaches a minimum value of
approximately 0.33. This lower limit corresponds to the most unstable mode of
free jet column buckling. With a further increase in the separation distance the
Strouhal number changes abruptly to a higher value, then decreases again until the
minimum value for Strouhal number is again achieved. Every step change in the

Strouhal number involves a corresponding change in the mode number.

The presence of jet stages is not unfamiliar; most leading-edge interactions
exhibit abrupt changes in frequency when the impinging length scale is increased.
The Ho and Nosseir?4 model for predicting the variation of frequency with Mach
number assumes that the phase difference between the downstream convective
wave and the upstream acoustic wave is zero. If it is stipulated that resonance
condition requires an integer number of waves to exist in the feedback loop, then

- L . L
TR0 T RO (11-23)

where the value of n is an integer that corresponds to the number of waves in the
feedback loop. A, and A, are the wavelengths for the downstream and upstream

traveling waves, respectively.

ll = 0.62 Um
f 1]
(11-24)
g = —¢ 1
cos9, f

Equation (11-24) assumes the downstream traveling wave has a convective

speed of 0.62 U, and the upstream traveling wave propagates upstream at the
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speed of sound, ¢, in a direction making an angle of 6, to the jet axis.
Figure 11-12 shows the dependence of the wavefront angle 6, with the separation
distance. The figure indicates the direction of the wavefront propagation varies
with the position of the plate and the resultant angle is approximately 30 degrees.

Equations (11-23) and (11-24) are now rewritten in the form

n = St(—L-) [-m—l— + M cos 6, (11-25)

D] Lo.s2
where 6, = 30°
This formulation may be used to predict the Strouhal number given the Mach

number and L/D; ratio. Figures 11-10 and 11-11 also provide a suitable estimate of
the Strouhal number.
In Table 11-3, a comparison is made between Equation (11-25) and the

Tabulated are the nozzle-to-plate
The predicted

experimental results of Ho and Nossier.?*.
separation distances at which the jet transitions to a new stage.

values are within 4 percent of the measured values.

Table 11-3

Comparison Between Predicted and Measured Values?4

(M =0.9, 6, =25° D=254cm)

L/ Dj
Frequency Percent
From
St;gc Equation | Measured Difference
(11-25)

1 1.25 - -
2 2.50 2.40 4%
3 3.74 3.75 0.3%
4 4,99 4.8-5.0 3.8%-0.2%
5 6.24 6.0-6.5 3.8%—4.2%
6 7.49 7.50 0.1%

11.2.3 Jet-Plate—Hole Configuration

A jet impinging on a plate with a hole through its center, referred to
hereafter as a hole tone, is another example of a jet-driven mechanism that

produces discrete tones.
Much of the work on hole tones is described in a paper by Chanaud and
Powell.28 Their measurements were made in air using an axisymmetric jet with a

mean exit velocity profile having a top-hat shape. Exploratory experiments were
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Figure 11-12. Dependence of Wavefront Angle on Plate Separation Distance.
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made using a nozzle that produced a parabolic velocity profile. This nozzle was
discarded when it was discovered that the jet was relatively stable, producing

tones only for a very limited Reynolds number range.

Chanaud and Powell observed that the test apparatus was extremely
sensitive to a number of experimental conditions. For example, the location of the
hole downstream from the nozzle exit was found to be critical for the jet to
produce a discrete tone. Any slight misalignment of the test rig caused the jet to

undergo changes in frequency and the production of higher harmonics.

Chanaud and Powell also discovered that the relative size of the hole as
compared to the nozzle diameter was critical for tone production. If the hole in
the plate was twice the size of the orifice diameter, the jet stream passed through
the hole. The sound pressure level was so low that it was difficult to measure and
it was presumed that the maximum velocity perturbation occurred within the

vortex ring, which was now a greater distance from the edge of the hole.

Figure 11-13 shows the approximate wave speed as a function of streamwise
coordinates from the nozzle exit. The plate used to complete these
measurements was four diameters downstream with a hole diameter equal to the
nozzle exit. The data shown here are compared to an edgetone experiment using
a planar jet with a fully developed parabolic velocity profile. As compared to the
edgetone, a higher convective wave speed ratio was obtained in the hole tone

experimental arrangement.

Shown in Figure 11-14 is the dependence of the Strouhal number versus
Reynolds number for hole tone systems . Depending on the Reynolds number, the
Strouhal number ranged between 0.5 and 0.75. The concept of frequency stages

(jumps) and hysteresis effects are once again demonstrated in these figures.

Blake® suggests as a frequency prediction model

st = fL - U B-1/4)
Um  Um 27(l+M) (11-286)

where the wave speed ratio (U, /U,,) ranges between 0.5 and 0.9, and M, is the

convective Mach number.
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11.3 Flows Past Cavities

Flow past a rectangular or slotted cavity provides the basis not only for self-
sustained oscillations of the purely hydrodynamic type, but also the potential for
coupling of these basic instabilities with a resonant acoustic mode within the
cavity or elastic characteristics of the cavity walls. Common to turbomachinery are
the shear layer instability modes coupled to cavity acoustic resonance meodes.
This type of coupled oscillations is common because the speed of the gas flow is
sufficiently high (typically M > 0.2) to cause the associated acoustic wavelength to
be smaller than the dimensions of the cavity. Described in this section are several
classes of oscillations, ranging from those that are purely hydrodynamic and
uninfluenced by acoustics effects to those that are strongly influenced by acoustic

resonant coupling.

11.3.1 Classification of Cavity Oscillations

A review of cavity oscillators developed by Rockwell and Naudascher! is
shown in Figure 11-15. The cavity oscillators are organized into three basic types,
as indicated in the first column of the figure. The second column shows the basic
cavity geometry. Sketches of cavities in the third column depict variations from

the basic model. The three types of cavity oscillations are:

Fluid-Dynamic Oscillations — Cavity oscillations that are driven solely by the
inherent instability of the shear layer.

Fluid-Resonant Oscillations ~ Cavity oscillations that result from coupling of
the inherent instability of the shear layer with one or more of the

acoustic resonant modes of the cavity.

Fluid-Elastic Oscillations — Cavity oscillations that result from coupling of
the inherent instability of the shear layer with elastic movement of a part
or all of the cavity bounding walls.

In practice, the classification of cavity oscillations proposed by Rockwell and
Naudascher may in fact occur simultaneously in nature. For instance, a cavity
oscillation may be controlled simultaneously by ﬂui&-dynamic. fluid-resonant, and
fluid-elastic oscillations. Their matrix classification scheme is designed to help
facilitate detailed analysis of the predominant hydrodynamic, acoustic, and struc-
tural features of a cavity oscillation. Sections 11.3.1.1, 11.3.1.2, and 11.3.1.3

address each type of classification shown in Figure 11-15, respectively.
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11.3.1.1 Fluid-Dynamic Oscillations

The purely fluid-dynamic oscillation is limited to the situation where the
cavity length (or other dominant dimension) is less than one-fourth the acoustical
wavelength of the disturbance. For this class of oscillations the acoustical
wavelengths exceed the dimensions of the cavity, preventing the existence of

standing waves and negating the effect of the cavity as a resonator.

The mechanism responsible for the self-sustained oscillations is the ampli-
fication of the unsteady shear layer which is strongly enhanced by the presence of
the downstream leading edge. Fluid-dynamic oscillation can be expected to have
features similar to the edgetone, suggesting a similar analytical approach. Flax?®
suggests a fluid-dynamic oscillator could be modeled with a fixed Strouhal number
to determine the frequency of the cavity oscillation. Flax's suggestion does not
rule out the possibility of selective amplification of the shear layer causing certain
disturbances to be more amplified than others. Discontinuous frequency activity
and hysteresis regions are possible because the downstream edge of the cavity
provides the capability for a feedback mechanism that will result in preferred

modes of oscillation.

11.3.1.2 Fluid-Resonant Oscillations

Fluid-resonant cavity oscillation occurs when the shedding frequencies are
sufficiently high and the acoustic wavelengths sufficiently short so as to allow for

standing waves inside the cavity.

Cavity behavior varies with depth as characterized by the length-to-depth
ratio. If the cavity length-to-depth ratio is sufficiently large (L/D > 1), then longi-
tudinal standing waves dominate and the cavity is termed shallow. Conversely, for
a length-to-depth ratio that is small (L/D < 1), the cavity is denoted as a deep

cavity and the acoustic waves are predominantly in the transverse direction.

Longitudinal wave resonance is possible when A,< 2L and for the case of

acoustic waves in the depth-wise mode, acoustic resonances will be observed
when 2,<4D.
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11.3.1.3 Fluid-Elastic Oscillations

Fluid-elastic cavity oscillations occur when one or more of the cavity walls
undergoes a deformation that is large enough to control the shear layer
perturbation. The frequency response of the system can therefore be represented
by a diagram in which the lines of shear layer instability are drawn along with the

lines of natural frequency for the elastic structure.

Fluid-elastic oscillations are more prone to occur in liquids where the
incompressibility tends to make structural distortions to the cavity walls.
Additional features and complications with liquids are the possibilities of
cavitation, dead water regions, and entrapped gas - all of which will impact the

compliance of the cavity volume.

11.3.2 sSurvey of Cavity Oscillation Models

The history of cavity oscillation models dates back to work originally done
by Helmholtz?¢ in 1868. Since that time, the interest in cavity oscillations
remained largely confined to musical interest, until in the mid-1990s severe
unsteady loads inside aircraft weapon bays and wheel wells were discovered. This
problem led to an extensive number of articles on cavity oscillation models that
apply different physical treatments to estimate the modes of oscillation. A
literature review by Flax describes many of these models according to their
common treatments. Contained in this section is a survey of only those models

most applicable to turbomachinery applications.

In this section, two physical treatments are reviewed: (1) feedback transit
time models, and (2) acoustic resonance models. Feedback transit time models
sum the transit time for vortex sheets formed by fluid layers moving in the
downstream direction to the transit time for an acoustic pressure disturbance
traveling upstream from the cavity trailing edge. Similar approaches have been
used by Powell® and others to explain a variety of self-sustained phenomena.
Several transit time models have already been discussed in previous sections.
Acoustic resonance models have the added criterion that a clearly identifiable
acoustic mode or modes must be excited in the cavity. In accordance with the

foregoing remarks, the cavity models are organized as follows:
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1. Feedback Transit Time Models, Empirical Estimates - The leading edge
of the cavity provides a complete feedback for a downstream dis-
turbance. The sum of the transit times on both paths equals the period.
The transit time frequency is the time required for a disturbance to
travel downstream plus the time required for the disturbance to feed
back to the sensitive region of the cavity lip. The transit times are

estimated using empirical data.

2. Feedback Transit Time Models, Analytical Estimates — The transit time
of the disturbance is estimated by making analytical estimates of the sum
of the phase of a downstream-traveling wave and the phase of the

upstream-traveling acoustic wave.

3. Feedback Transit Time Models and Cavity Resonance Model — The
disturbance transit time is estimated using an approach similar to
models 1 and 2, above. However, this approach requires the transit time

frequency to be coincident with the cavity acoustic resonances.

In an early, highly successful study, Rossiter?! estimated the excitatioa
frequency using a transit time model. Rossiter recognized that the creation of a
cavity tone requires the existence of a fluid-dynamic excitation having features
similar to those described in Section 11.1 for the edgetone generator. He also
showed that the cavity geometry serves to enhance tone generation, but the cavity
need not be resonant for a tone to be generated. The formula developed by
Rossiter is well supported with experimental data. But Rossiter's formula has
received criticism because it does not predict whether a self-sustained oscillation
will in fact occur. Specifying the turbulent characteristics of the separated shear
layer near the cavity leading edge is necessary to predict instability character-
istics. Such quantities are not required in Rossiter's model. As shown in
Figure 11-16, the fluid velocity, the turbulent characteristics near the cavity
opening, and the cavity dimensions all play a significant role in predicting the

cavity tones.

11.3.2.1 Feedback Transit Time Models, Empirical Estimates

The problem of any cavity feedback transit model is to estimate the sum of

the time required for the disturbance wave to cross the cavity opening and the
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Shear Layer Acoustic Radiation

A - hydrodynamic wavelength A, — acoustic wavelength
U, - convective velocity ¢ - speed of sound

U - free-stream speed f, - acoustic frequency

f _ shear-layer frequency P, — RMS pressure at base of cavity

6 - momentum thickness P, - RMS pressure at cavity opening

M - Mach number

Figure 11-16. Physical Dimensions and Flow Parameters
for Cavity Oscillation Models.
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time required for the acoustical wave to travel back upstream. The sum of these

two events equals the period of the oscillation. Rossiter3! formulated the follow-

ing model
t, = disturbance wave time = —<—
Kk, Uco
. . L
ty = acoustic wave time = T
L L
T — tl + t2 kam 4 E
to derive
U, M+ 1/k, (11-27)

where k, = U;/Ux = the ratio of shear layer velocity to free-stream velocity,

m = 1,2,3... = mode number,

o = empirical constant,

L = cavity length, and

M = Mach number as measured in the free-stream.

Values of k, and o are empirically determined; Rossiter obtained values of
0.57 and 0.25, respectively. o is a constant that accounts for the phase differences
between (1) the upstream arrival of the acoustic wave and the subsequent vortex
shedding, and (2) the downstream interaction with the leading edge and the

subsequent acoustic radiation.

A refinement pertinent to high-speed flows is that of Heller et al.32.33 The
Rossiter model was found to predict frequencies consistent with experimental
data provided the Mach number was below 1.5. At higher Mach numbers the
Rossiter model underpredicted the Strouhal number.

Heller attributes the breakdown in the Rossiter model to the temperature
difference inside the cavity as compared to the free-stream temperature. The

speed of sound inside the cavity, ¢,. may be determined by
Ca = Co [1+71 (A-17/2) M2]'/2 (11-28)

where ¢. is the free-stream static sound speed, A is the adiabatic exponent, and

r is the temperature recovery factor

Te - Ty

r = TD'_TM (11"29]
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where T.. and T, are the static and stagnation temperatures of the free stream

and T, is the average static temperature within the cavity.

The temperature recovery factor for compressible flows was found to be
close to unity when the Mach number exceeds 1.5. Rossiter assumed the speed of
sound in the cavity to be the free-stream speed of sound, thereby assuming a value
of zero for the recovery factor. Using Equation (1 1-29), Heller obtained

fL = m-«a
. ( )

M +4], m=1223 ... 11-30
[1+ G- M2 K { ]

11.3.2.2 Feedback Transit Time Models, Analytical Estimates

Bilanin and Covert34 calculate the transit time for the disturbance by intro-
ducing a monopole acoustic source at the downstream edge. This source repre-
sents pressure fluctuations due to the shear layer impingement. Two general
solutions are derived. One models the shear layer displacement in the streamwise
direction. The other general solution models the acoustic pressure field due to an

acoustic monopole source at the impingement edge.

The phase relationship is derived by the summation of phase around the
entire feedback loop, i.e., summation of the phase of the acoustic feedback
pressure and the phase of the downstream vortex sheet. The phase of the
acoustic feedback pressure field can be determined by inspecting the asymptotic

formula for the potential of a cylindrical wave given by Rayleigh35 as

2, a2
D = -(27}‘“)% cos k(ct—r—%l) {l —1_01—2_%@+m}

{11-31})

2472452
+ (rﬁ_)%sink(ct-r—ll){ 12 _ _I'»3-5 +)
2kr 8 1=8kr 1+2e3e{8kr)?

where k=m/c.and c is the speed of sound in the fluid media. The potential in
Equation (11-31) has an acoustic pressure phase given by kL -n/4 . The pressure
has a phase difference of wn/2 from the potential so that the acoustic pressure

phase becomes KL + n/4 .

The phase difference for the downstream-moving vortex sheet is deter-
mined from the general form for a perturbed shear layer. Bilanin and Covert show
that the phase has two parts: the phase of the spatial frequency, k. L, and the
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phase, ¢, due to the lag of the vortex sheet after forcing at x = 0. Added to these

two terms is n/2 to account for a maximum pressure at the downstream edge

when the shear layer displacement is at a minimum.
The resulting expression is obtained for the eigenvalue equation for
excitation frequencies

er+¢+_SZT£+%=2‘Jtn (11-32)

which becomes
f - n-3/8-6/2n

Uo:! l/kv'l'M(Coo/C;l] (11_33)
where k, = w/k U.,
a = 6/2n + 3/8,
Coo = Speed of sound in free-stream,
€. = speed of sound inside cavity.

The form of Equation (11-33) is similar to that of Rossiter's formula.

In earlier work by Covert,36.37 a hydrodynamic stability approach was taken
to approximate which frequency of the shear layer is most susceptible to highly
amplified growth. A set of linearized perturbation equations were written for the
cavity's internal and external flows. At the cavity opening, the equations were
bounded by the requirement of continuous pressure across the interface. The
resulting equations were reduced to a single integral whose characteristic equa-
tion provides a relationship for the wave number and frequency. The relationship
is only satisfied for certain values of frequency and is complex with the sign of the
imaginary part governing the disturbance. When the imaginary part of the
frequency is positive the disturbance grows: when it is negative the distur-

bance decays.

Figure 11-17 shows results of Covert's integral equation calculated for sub-
sonic and supersonic flows. In the region where the damping factor is positive,
the disturbance can be expected to grow with a frequency indicated by the
Strouhal number. For incompressible flows (Mach number less than 0.25), the
flow is unstable below a critical Strouhal number that is determined at the zero
crossing. As the Mach number is increased, the behavior changes as the stability

curves cross the zero axis twice. As shown in Figure 11-17b (M = 0.75), there are
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two unstable regions separated by a stable region. At higher Mach numbers
(M = 0.9), the stability curves return to crossing the horizontal neutral axis

only once.

Figure 11-18 shows a plot of the Strouhal number as a function of Mach
number constructed from the stability curves (shown in Figures 11-17a and b) and
the points where they cross the horizontal axis. The only unknown quantity in
Figure 11-18 is the freestream velocity, and its value defines when the disturbance

is neutrally stable.

11.3.2.3 Feedback Transit Time Models and Cavity Resonance Model

Block3® models the shear layer as an infinitesimally thin sheet and the
acoustic disturbance at the cavity trailing edge as a simple acoustic point source.
In an attempt to account for the acoustic resonance modes of the cavity, Block
included the first image source at the trailing edge of the cavity to account for the
effect of the acoustic wave reflected from the bottom of the cavity.

The acoustic field and the motion of the shear layer are matched at the
leading and trailing edges to develop
_f_L, = il m

I k 11-34
Us {1+ 08 ( )

where k. real part of wave number (use a value of 0.57), and

m = mode number, integer.

Equation (11-34) correctly accounts for the dependence of the Strouhal number
on the L/D ratio as observed in experimental data. According to Block, this

formula represents the lengthwise or vortical-acoustic modes of oscillation.

The depthwise standing wave-oscillations are calculated by using a relation

developed by East:3°

L = (1) (L) _1/4

U, (M) (D) 1+A(L/D)B' (11'35)
East derived Equation (11-35) from Rayleigh's formula for an open circular pipe:

025 = (D} [1+A (L/D)"] (11-36)

where A and B are empirical constants. Values of A = 0.65 and B = 0.75 give a

curve that compares favorably with experimental and theoretical models.39
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If Equations (11-34) and (11-35) are combined so that the frequency for
the shallow acoustic waves coincides with the depthwise acoustic modes, the
formula

(1/k:) L/D

M = _
4m[1+A{L/D) - [(L/D) +0.514] (11-37)

may be used to estimate the Mach number at which a cavity begins to oscillate in a
given mode, m . Equation {11-37) was tested by Block38 and shown to provide
adequate agreement for a Mach number range of 0.1to 0.5 and a cavity L/D

ratio below 2.

11.3.4 Prediction Procedure

All of the models reviewed in the preceding section have been shown
to correlate well with experimental data. Many of these models follow a
phenomenological formulation similar to Rossiter's model. Yet all of these models
are limited to a specific range of L/D and Mach number values. The success of
correlating the models with experimental data is apparently due to a flow-induced
oscillation that is strongly dependent on a few very dominating variables. These
parameters include the Mach number, the cavity length-to-depth ratio, and

the phase.

Plotted in Figure 11-19 is a comparison of the Mach numbers and L/D
ratios for which these models have been shown to work. Included in the figure
is an envelope illustrating the cavity conditions expected inside most turbo-
machinery. It is seen in Figure 11-20 that the models of Rossiter,3! Block,38
East,3? and Plumblee4© fall within the envelope drawn for turbomachinery cavities.
The Rossiter and Block models estimate hydrodynamic/acoustic modes in the
streamwise direction, while the East formulation is specifically for the depthwise
cavity mode. The Plumblee model, which is purely an acoustical model, favors

shallow and deep cavities alike.

Table 11-4 shows the Strouhal numbers calculated using the Rossiter,
Block, and East models. The shading indicates values of L/D and Mach number
that are not contained within the ranges shown in in Figure 11-19. The

difference between Rossiter and Block models is an outcome of the first image
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source that Block has included in her model; thus the L/D dependence is burilt
into the Block model. Values for the East model are tabulated here for

comparison,

When making predictions inside turbomachinery, use Block's formula for
cavities having an L/D > 1. If the cavity has an L/D < 1, then use East's formula to
determine the resonance of the depth mode and Rossiter's formula to determine
the longitudinal resonance mode. The latter mode will be the weaker of the two

modes in deep cavities.

Table 11-4

Comparison of Strouhal Numbers Calculated from the
Rossiter, Block, and East Cavity Oscillation Models

Rossiterd! (Eqn. 11-27) Block? (Egn. 11-34) East3”
L/D Mach (Eqn.
m=1 m=2 m=3 m=1 m=2 m=3 11-35)

0.20 0.384 0.895 1.407 0.423 0.845 1.268 0.254
0.40 0.348 0.812 1.276 0.336 0.672 1.008 0.127
0.25 0.60 0.319 0.743 1.168 0.278 0.557 0.836 0.085
0.80 0.294 0.685 1.077 0.238 0.476 0.714 0.064
1.0 0.272 0.635 0.998 0.208 0.416 0.624 0.051

0.20 0.384 | 0895 | 1.407 | 0463 | 0.926 | 1.389 | 0451
0.40 0348 | o0sglz | 1276 | 0390 | 0.780 | 1.169 | 0.225
0.5 | 0.60 0.319 | 0.743 1.168 | 0.337 | 0673 | 1010 | 0150
0.80 0294 | 0685 | 1077 | 0296 | 0592 | 0.888 | 0.113

1.0 0279 | 0635 | ooos | o264 | 0529 | o7e3 | o0.090
0.20 0384 | 0895 | 1.407 | 0478 | 0956 | 1.43¢4 | 0.615
0.40 0348 | 0812 | 1276 | 0412 | o824 | 1235 | 0.308

0.75 | 0.60 0319 | 0743 | 1168 | 0362 | 0723 | 1.085 | 0.205

0.80 0004 | 0685 | 1.077 | 0322 | 0645 | 0967 | 0.154

1.0 0272 | 0635 | ooes | 0201 | o581 | 0872 | 0.123
0.20 0384 | 0895 | 1.407 | 0486 | 0972 | 1.458 | 0.758
0.40 o348 | 0812 | 1276 | 0424 | 0847 | 1271 | 0379

1.0 0.60 0.319 | 0.743 1.168 | 04376 | 0751 | 1.127 | 0283
0.80 0294 | 0.685 1.077 | 0.337 | 0674 1.012° | 0.189
1.0 0272 | 0635 | 0998 | 0306 | 0612 | 0918 | 0.152

0.20 0.384 0.895 1.407 0.491 0.982 1.473 0.884
0.40 0.348 0.812 1.276 0.431 0.862 1.294 0.442
1.25 0.60 0319 0.743 1.168 0.384 | 0.769 1.153 0,295
0.BO 0.294 0.685 1.077 0.347 0.694 1.040 0.221

1.0 0.272 0.635 0.998 0.316 0.632 0.948 0.177

0.20 0.384 0.895 1.407 0.494 0.989 1.483 0.997

0.40 0.348 0.812 1.276 0.436 0.873 1.309 0.498

1.5 0.60 0.319 0.743 1.168 0.391 0.781 1.172 0.332
0.80 0.294 0.685 1.077 0.354 0.707 | 1.081 0.249

1.0 0.272 0.635 0.998 0.323 0.646 0.969 0.199
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