
NASA Technical Memorandum 108535

May 1997

Inverting the Pendulum Using Fuzzy Control
(Center Director’s Discretionary Fund Final Report—Project 93–02)

R.R. Kissel and W.T. Sutherland

i

NASA Technical Memorandum 108535

May 1997

Inverting the Pendulum Using Fuzzy Control
(Center Director’s Discretionary Fund Final Report—Project 93–02)

National Aeronautics and Space Administration
Marshall Space Flight Center • MSFC, Alabama 35812

R.R. Kissel and W.T. Sutherland
Marshall Space Flight Center • MSFC, Alabama

ii

iii

TABLE OF CONTENTS

BACKGROUND .. 1

FUZZY CONTROL.. 2

PENDULUM HARDWARE .. 3

SOFTWARE ... 6

RESULTS ... 8

CONCLUSIONS .. 10

FUTURE WORK ... 11

APPENDIX A—MATLAB CODE 1 ...13

APPENDIX B—MEMBERSHIP FUNCTIONS FOR SINGLE PENDULUM 17

APPENDIX C—TOGAI HANDWRITTEN CODE FOR SINGLE PENDULUM 19

iv

LIST OF FIGURES

1. Inverted pendulum control system block diagram ... 2

2. Line drawing of the pendulum hardware.. 3

3. Photograph of the single pendulum hardware .. 4

4. Controller electronics with 6811 microprocessor on right ... 5

5. Total system hardware .. 5

6. Single pendulum complete control matrix.. 7

7. Single pendulum transient response ... 8

8. Double pendulum transient response.. 9

v

ABBREVIATIONS AND ACRONYMS

A ampere

A/D analog to digital

CDDF Center Director’s Discretionary Fund

dtheta variable for pendulum rate

D/A digital to analog

EEPROM electrically erasable programmable read-only memory

k thousand

max maximum

min minimum

Mpos motor position

Mrate motor (revolution) rate

RAM random access memory

R/D resolver digital

Theta pendulum angle

thetadot pendulum rate

V volt

vi

1

TECHNICAL MEMORANDUM

INVERTING THE PENDULUM USING FUZZY CONTROL

BACKGROUND

This work was done as the result of a desire to demonstrate fuzzy motor control with an empha-
sis on doing something that is difficult to do by conventional control methods. The demonstration was
conducted in hardware rather than as a software simulation. The Center Director’s Discretionary Fund
(CDDF) was the avenue chosen for funding the task. A CDDF typically runs for 2 years; the funding
commitment is $20,000 to $40,000. This work eventually stretched to 4 years. The project was not as
extensive as originally intended, primarily because CDDF work is given a low priority. A highly nonlin-
ear system was chosen as the best candidate for the demonstration because fuzzy control is inherently
nonlinear and conventional controllers generally only work well with linear systems.

The most common nonlinear system for demonstrating a control strategy is perhaps the inverted
pendulum. The version chosen for this demonstration is on a circular base rather than the usual track.
This way, it cannot run off the track. Also, while the act of maintaining the pendulum in an inverted
position is somewhat nonlinear, the act of bringing the pendulum to a vertical position from the hanging
position is extremely nonlinear. The fuzzy controller does this, as well as maintaining the pendulum
inverted, and no one could define another controller that could invert the pendulum at all.

After getting the controller to work with the single pendulum, the next task was to try to make
the controller work with a double inverted pendulum. This has worked in simulation to a limited extent,
but not well enough to try in hardware. After that, a high-frame-rate camera was purchased in order to
attempt real-time control of the pendulum using only visual inputs. That is, image processing is done in
real time to determine the pendulum angle, pendulum rate, and base rate (and base position, if desired).
It may be possible to use conventional cameras with the high-frame-rate camera for stereo vision.

Although time for the CDDF work has been exhausted, some work may continue after the report
is published. Two other projects were ready to be used for fuzzy control if time had been available. One
involved a control-structures interaction suitcase demonstration that uses a piezoelectric damper to
reduce structural vibration. The other was an electromechanical actuator with a conventional controller.

2

FUZZY CONTROL

Fuzzy controllers typically have more sensors than conventional controllers, while precision is
generally not as high as with other controllers. However, due to the ease with which the control can be
changed and its total nonlinear capability, fuzzy control often works better and can be built more quickly
than anything else. Since there are so many parameters, there may be a need to use something like
genetic algorithms to optimize everything, but, even without optimization, reasonable results can be
obtained. Figure 1 is a block diagram of the inverted pendulum system. The system includes three inputs
into the pendulum and one output into the motor.

FIGURE 1.—Inverted pendulum control system block diagram.

The sequence inside the controller begins with sending the inputs through an analog-to-digital
(A/D) converter. These digitized inputs are each placed (fuzzified) into one of typically three, five, or
seven ranges; rules are written with these ranges as arguments rather than with the individual value as
arguments. Then the rules are evaluated and fuzzy values are produced for each one using the max-min
method, max-dot (used here, also called max-product), or other inference method. In rule evaluation,
“or” implies selecting the maximum of the two values, while “and” selects the minimum of the two
values. In either case, the value itself is at the intersection of the membership function and the actual
input number. With max-dot, the output membership function is scaled to the result of the minimum
value or maximum value, whereas with the max-min it is clipped to that value. Both methods give
similar results. These rule outputs are then combined (defuzzified) by the centroid (used here), height, or
other method to produce one numerical (crisp) value. The combination of all the rule outputs generally
produces an irregularly shaped result. The centroid of this irregular shape (easily computed for trapezoi-
dal membership functions) is the crisp output value. In u4e height method, just the height of each rule
output is used and the weighted output of all contributions is used. However, in the height method,
unsymmetrical output membership functions cause errors. Finally, a digital-to-analog (D/A) converter is
used to produce the voltage needed to drive the actuator.

Theta

dTheta

Mrate

MotorPendulum

3

PENDULUM HARDWARE

The pendulum hardware was built on a large inverted trash can. A line drawing of the hardware
is shown in figure 2, and a photograph is shown in figure 3. The motor in the center rotates the bar with
the actual pendulum attached to one end and the counterweight at the other. A tachometer is geared to
the motor for one of the three inputs. A resolver is geared to the pendulum to measure the position of the
pendulum as the second input, and successive resolver values are compared to produce pendulum rate as
the third input. The command goes to the motor for the systems’ only output. A motor position measure-
ment would be desirable, but the only method for obtaining that, as built, is to integrate the tachometer
output. This is only an 8-bit value and is not accurate enough to be useful. A future redesign could
provide improvement on this part.

FIGURE 2.—Line drawing of the pendulum hardware.

Resolver 2

Resolver 1

Slip Ring Assy.

Base

Motor

4

FIGURE 3.—Photograph of the single pendulum hardware.

The electronic hardware uses a 12-bit resolver/digital (R/D) converter for the pendulum input, an
8-bit converter (in the Motorola 6811 microprocessor) for the motor tachometer, and a 12-bit (uses 8 of
the 12) D/A converter for the motor drive. The Motorola processor is a model 68HC11E8, which has 2
kilobytes of electrically erasable programmable read-only memory (EEPROM), 256 bytes RAM, and 4
A/D converters (8-bit). Figure 4 shows a photograph of this hardware, where theR/D and A/D converters
are on the left side and the 6811 microprocessor is on the right side. There are three power supplies: 20
V at 3A for the motor, –20 V at 3A for the motor, and 5 V for the signals and central processing unit.
Figure 5 shows the two large power supplies above the bench and the 5-V supply on the bench to the
right. The motor is rated for 0.5 foot-pound at 5 A. The motor and tachometer are most visible in
figure 3.

5

FIGURE 4.—Controller electronics with 6811 microprocessor on right.

FIGURE 5.—Total system hardware.

6

SOFTWARE

Simulation was done first. Matlab software was programmed to derive the dynamic equations
using the Lagrange method. This was done using the symbolic math toolbox. The Matlab code is shown
in appendix A. The kinetic energy equation is k, the potential equation is p, the dissipation equation is d,
and the forcing function is q1. Xd2 and xd4 are the two resulting differential equations describing the
system dynamics. These are shown as xdot(2) and xdot(4) in the function xdot. Then Matlab was used to
simulate these equations with numbers approximating actual hardware values. A small amount of tuning
was done in order to set gains, check scale factors, etc. The controller was then built and simulated with
the Togai fuzzy control package with the dynamic equations taken from Matlab.

The membership functions developed for the system were worked out with the Togai software
and are shown in appendix B. There are four for the single pendulum: Theta for pendulum angle, dTheta
for pendulum rate, Mrate for the motor rate, and Motor for the motor command. These are usually
triangular, although trapezoidal is also common. An optimizing algorithm could determine that some
other shape would work better, that different widths would be better, or perhaps that a different number
of functions would be better. “Negative small,” for example, refers to any data point within that particu-
lar membership function.

The real-time fuzzy controller software that actually ran in the 6811 microprocessor was gener-
ated by Togai in 6811 assembler language. The rest of the software to do sensor inputs, use the controller
inputs and output, and do scaling, etc., was written by hand; all the software was combined and as-
sembled by the Avocet assembler on a standard personal computer. Appendix C has the Togai-generated
code for the membership functions, rules, and variables. It also has its simulation initialization code and
then the simulation code itself. This is followed by the Avocet linker code and the resulting mapping.
This was downloaded to the 6811 microprocessor via a serial link and then run. The object code for this
is shown in ASCII format as sent to the 6811 microprocessor. Finally, the handwritten assembly code is
shown which simply calls the Togai code as a subroutine to give the fuzzy controller output that results
from the present inputs. This handwritten code also handles timers, scaling, limiting, and input/output.
Procom was used to send the ASCII to the 6811 microprocessor. The ASCII routines at the end of the
handwritten code were used to send data back to the computer for troubleshooting.

The control (rule) matrix in the fuzzy controller is full, i.e., there are no empty combinations.
This usually means (and does here) that the rules have not been optimized (number of rules minimized).
The complete control matrix is shown in figure 6. The theta-thetadot portion of the matrix is the standard
pendulum controller used to keep the pendulum upright and stable once it is upright. The motor rate-
theta portion keeps the motor rate to a minimum. The two shaded columns are all that is needed to invert
the pendulum. The control matrix can be read, for example, by saying that if theta is negative small and
thetadot is positive small, then the control is zero.

7

FIGURE 6.—Single pendulum complete control matrix.

An output results from evaluating all the rules and combining their contributions. If, for example,
the theta value is –20 and the thetadot value is +6, both determined from the actual sensor readings
scaled from –128 to +127, moving to the membership function intersections will give a value of mem-
bership for each and will show which rules apply. If a rule has positive large and no sensor value is
positive large, then that rule does not apply. However, for –20 and +6, some rule(s) will apply. If none
do, as could occur after optimization was done, no output change occurs. One way of using these rule
results to determine the actual value for the output is to combine them using a center-of-gravity method
(explained earlier). This output is what gets sent to the D/A converter for the motor. Fuzzy control is a
good method for combining sometimes conflicting rules to produce a useful output and is an inherent
method of doing smooth, nonlinear gain switching.

Thdot

PB
PS
Z

NS
NB

NB
NB
NS
PS
Z
Z

NU
Z
Z
Z

NS
NB

Mdot

NS
NB
Z

PS
PB
PB

PB
Z

NB

Th
Z

NB
NS
Z

PS
PB

Th
Z

PS
Z

NS

PS
NB
NB
NS
Z

PB

PU
PB
PS
Z
Z
Z

PB
Z
Z

NS
PS
PB

Notes: Shaded area controls the inversion process.
Th–Theta
Thdot–Thetadot
Mdot–Motor Rate

CONTROL MATRIX

8

RESULTS

A VHS tape of the controller in action is available. Starting the pendulum in the already inverted
position results in the pendulum’s remaining inverted, but with some wavering and some slow rotation
of the pendulum around the can. The pendulum must move (start to fall) before the controller has an
error to correct. This movement was left somewhat exaggerated to illustrate visually how the control
operates. The motor must also move the support bar under the pendulum to maintain control, and this
causes the bar to wander around the can since the can is not very sturdy and the bar falls different
amounts before the controller gets under it. If motor position (angle) was available, the controller would
be able to limit the wander to a relatively narrow range about a fixed angle.

Starting the pendulum in the down position results in somewhat violent swinging as the control-
ler begins to upright the pendulum. This control is extremely nonlinear and actually unstable until a
nearly inverted position is reached. The pendulum can be jarred such that it falls, but it always rights
itself. It can be prodded below the point of losing control, and it is quite robust. When control is lost, the
pendulum rights itself again.

Figure 7 shows the single pendulum starting in its rest position. The darker line is Mrate while
Theta is the one that settles in at about 3.3 sec. The third line is Mpos. The violent swinging is evident
first, followed by stabilizing upright to the limit cycles of position and rate. Figure 8 shows a transient
response of the double pendulum stabilizing to the inverted position. The lighter line is the lower bar
position while the darker line is the upper bar position. The stable angle range is quite small, indicating
either that the system is hard to control or that the controller is not optimized for this particular system.

FIGURE 7.—Single pendulum transient response.

0.00

4.0

2.0

0.0

–2.0

–4.0

time, seconds
1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

File Edit Object Tool Operation Window Simulation
TILShell+

Single Pendulum

Legend
.¥1
.¥2
-¥3 Theta

dTheta
Motor
Mrate
Mpos
¥1
¥2
¥3
¥4

– t4
5.6978
–32
4
0.087649
–1.57581
–0.0233428
–1.10046

a
n
g
l
e

r
a
d
i
a
n
s

Watch

Tools
Help

9

FIGURE 8.—Double pendulum transient response.

time, seconds

File Edit Object Tool Operation Window Simulation
TILShell+

Double Pendulum

Legend
.×3
+×7

Theta
dTheta
Motor
Mrate
MDOS
arm2pos
arm2rate

–0.015708
–0.0331213
0.0402135
–1.54824
–27.6314
–0.207554
0.0482917

a
n
g
l
e

r
a
d
i
a
n
s

Watch

Tools

Help

0.100

0.080

0.060

0.040

0.020

0.000

–0.020

–0.040

–0.060

–0.080

–0.100
0.00 1.00 2.00

10

CONCLUSIONS

Although one objective of this work was to compare this controller with more conventional
controllers, no other controller that would invert the pendulum could be defined. There was speculation
that a piecewise linear controller with much switching could be made to work, but it was never pro-
duced. In fact, the fuzzy controller is the ultimate switching controller since it transitions smoothly
between the various rules (pieces) to accomplish the control. Although keeping the pendulum inverted is
not difficult for even a set-point controller, inverting it is where fuzzy control excels.

11

FUTURE WORK

Balancing the double pendulum has been done here in simulation but not in hardware. The
simulation was not optimized for this, and the angle ranges for stability were only a few degrees. It is
not certain if the present hardware would even allow the double pendulum to be inverted. The hardware
may not be sturdy enough to make it work and, in fact, it may not even be theoretically possible to do.
More work could be done here.

There is a suitcase demonstration of a control-structure interaction device that uses piezoelectric
material to provide damping to a thin, flexible beam (about 10 inches long). The fuzzy control could be
tested to determine how it works just by controlling the motor. Perhaps the piezo material could also be
tied to an output for additional control. An earlier simulation of fuzzy control as applied to this device
was made by a summer faculty employee and appeared to work well, but it was never tested on the
hardware. A 6811 microprocessor had been added to the hardware and it was ready to be used.

An electromechanical actuator was to be controlled with a fuzzy controller and compared with
the conventional controllers presently being used. There did not seem to be much improvement possible
here since the controller was full on most of the time. Only when near the commanded point would
some improvement be possible. Perhaps some worthwhile improvement could be made here.

A high-frame-rate camera (and frame-grabber board) was purchased to derive all the pendulum
control inputs from image processing, thereby using no sensors (or wiring) on the pendulum itself. This
particular implementation of the pendulum, however, with its rotation, presents various perspectives to
any fixed camera position and this has to be resolved. Two standard video cameras were also purchased,
and one or both of these could possibly substitute or be used with the high-frame-rate camera. It may be
possible to use two cameras to solve the rotational perspective problem. But time did not permit any of
this to be done.

This project received much attention and demonstrated that fuzzy control is a useful tool for the
engineer when appropriate.

12

13

APPENDIX A
MATLAB CODE 1

PENDULUM.M.

clear;clc

k=’1/2*mpl*((rbar*Dg-len/2*cos(th)*Dth) ^2+(len/2*sin(th)*Dth) ^2)+1/2*ibar*Dg^2+1/2*ip1*Dth^2';
pretty(k)
p=’mp1*gr*len/2*cos(th)’; %gr=gravity
pretty(p)
d=’1/2*dp1*Dth^2+1/2*dbar*Dg^2';
pretty (d)
q1=’tm/rbar’;
q2=’0';
pretty(q1)
pretty(q2)

g=’g(t)’;
Dg=diff(g,’t’);
th=’th(t)’;
Dth=diff(th,’t’);

k1=diff(k,’Dth’);
k1=subs(k1,th,’th’);
k1=subs(k1,Dth,’Dth’);
k1=subs(k1,Dg,’Dg’);

k2=diff(k1,’t’);
k2=subs(k2,’D2g’,’diff(diff(g(t),t),t)’);
k2=subs(k2,’D2th’,’diff(diff(th(t),t),t)’);
k2=subs(k2,’Dg’,’diff(g(t),t)’);
k2=subs(k2,’Dth’,’diff(th(t),t)’);
k2=subs(k2,’th’,’th(t’);

k3=diff(k,’th’);

k4=diff(p,’th’);

k5=diff(d,’Dth’);

14

k6=diff(k,’Dg’);
k6=subs(k6,th,’th’);
k6=subs(k6,Dth,’Dth’);
k6=subs(k6,Dg,’Dg’);

k7=diff(k6,’t’);
k7=subs(k7,’D2g’,’diff(diff(g(t),t),t)’);
k7=subs(k7,’D2th’,’diff(diff(th(t),t),t)’);
k7=subs(k7,’Dg’,’diff(g(t),t)’);
k7=subs(k7,’Dth’,’diff(th(t),t)’);
k7=subs(k7,’th’,’th(t)’);

k8=diff(k,’g’);

k9=diff(p,’g’);

k10=diff(d,’Dg’);

R=symop(k2,’–’,q2,’–’,k3,’+’,k4,’+’,k5);
simplify(R);
%pretty(R)

S=symop(k7,’–’,q1,’–’,k8,’+’,k9,’+’,k10);
simplify(S);
%pretty(S)
[g1,g2]=solve(R,S,’D2th,D2g’);
%pretty(g1)
%pretty(g2)

R=subs(R,.4,’mp1’);
S=subs(S,.4,’mp1’);
R=subs(R,.005,’ip1’);
S=subs(S,.005,’ip1’);
R=subs(R,9.8,’gr’);
S=subs(S,9.8,’gr’);
R=subs(R,.08,’ibar’);
S=subs(S,.08,’ibar’);
R=subs(R,.01,’dbar’);
S=subs(S,.01,’dbar’);
R=subs(R,.01,’dp1’);
S=subs(S,.01,’dp1’);
R=subs(R,.2,’len’);
S=subs(S,.2,’len’);
R=subs(R,.2,’rbar’);
S=subs(S,.2,’rbar’);

15

R=subs(R,0,’tm’);
S=subs(S,0,’tm’);

[g1,g2]=solve(R,S,’D2g,D2th’);

g1=subs(g1,’b’,’g’);
g1=subs(g1,’c’,’Dg’);
g1=subs(g1,’d’,’th’);
g=subs(g1,’e’,’Dth’);
g2=subs(g2,’b’,’g’);
g2=subs(g2,’c’,’Dg’);
g2=subs(g2,’d’,’th’);
h=subs(g2,’e’,’Dth’);

g=simple(g);
h=simple(h);
g=collect(g)
h=collect(h)
pretty(g)
pretty(h)

g3=’Dc=g’;
h1=’De=h’;
g3=subs(g3,g,’g’)
h1=subs(h1,h,’h’)

%[b,c,d,e]=dsolve(‘Db=c’,g3,’Dd=e’,h1,’b(0)=.01’,’c(0)=0’,’d(0)=0’,’e(0)=0’,’t’)

xd2=subs(g,’x(1)’,’b’);
xd2=subs(xd2,’x(2)’,’c’);
xd2=subs(xd2,’x(3)’,’d’);

xd4=subs(h,’x(1)’,’b’);
xd4=subs(xd4,’x(2)’,’c’);
xd4=subs(xd4,’x(3)’,’d’);

xd2=subs(xd2,’x(4)’,’e’)
xd4=subs(xd4,’x(4)’,’e’)

t0=0;tf=3;
x0=[0 0 .01 0]’; %initial conditions
[t,x]=ode23(‘penddiff’,t0,tf,x0);
%plot(t,x(:,3))
plot(t,x)

16

PENDDIFF.M

function xdot=penddiff(t,x)
xdot=zeros(4,1);

xdot(1)=x(2);
xdot(3)=x(4);

xdot(2)=9/4*sin(x(3))/(2*cos(x(3))^2–27)*x(4)^2+5/2*cos(x(3))/(2*cos(x(3))^2–27)*x(4)+1/16*
(–1568*cos(x(3))*sin(x(3))+45*x(2))/(2*cos(x(3))^2–27);

xdot(4)=2*cos(x(3))*sin(x(3))/(2*cos(x(3))^2–27)*x(4)^2+30/(2*cos(x(3))^2–27)*x(4)+1/
2*(5*cos(x(3))*x(2)–2352*sin(x(3)))/(2*cos(x(3))^2–27);

17

APPENDIX B
MEMBERSHIP FUNCTIONS FOR SINGLE PENDULUM

–120 –80 –40 0 40 80 120

1.00

0.80

0.60

0.40

0.20

0.00

Be
lie

f

Theta

Variable Theta membership functions

The membership functions for this variable are:

Membership function NB: Points list: –128, 1 –80,1 –50,0
Membership function NS: Points list: –25.18867925,0 –10, 1 0 ,0
Membership function Z: Points list: –5,0 0,1 5, 0
Membership function PS: Points list: 0,0 10, 1 25. 18867925,0
Membership function PB: Points list: 50,0 80, 1 80, 1 127, 1
Membership function NU: Points list: –60,0 –30, 1–14.38679245,0
Membership function PU: Points list: 15.58962264,0 30,1 60,0

–120 –80 –40 0 40 80 120

1.00

0.80

0.60

0.40

0.20

0.00

Be
lie

f

dTheta

Variable dTheta membership functions

The membership functions for this variable are:

Membership function NB: Points list: –128, 1 –50,1 –20,0
Membership function NS: Points list: –40,0 –20,1 0,0
Membership function Z: Points list: –20,0 –0.5,1 20,0
Membership function PS: Points list: 0,0 20,1 40,0
Membership function PB: Points list: 20,0 50,1 127,1

18

–120 –80 –40 0 40 80 120

1.00

0.80

0.60

0.40

0.20

0.00

Be
lie

f

Mrate

Variable Mrate membership functions

The membership functions for this variable are:

Membership function NB: Points list: –128, 1 –10,1 0,0
Membership function Z: Points List: –4.716850829,0 0, 1
5.069060773,0.002673796791
Membership function PB: Points list: 0.0 10,1 127,1

–120 –80 –40 0 40 80 120

1.00

0.80

0.60

0.40

0.20

0.00

Be
lie

f

Motor

Variable Motor membership functions

The membership functions for this variable are:

Membership function NB: Points list: –128, 1 –100,1 –50.0
Membership function NS: Points list: –100,0 –50,1 –0.5,0
Membership function Z: Points list: –50,0 –0.5, 1 50.0
Membership function PS: Points list: –0.5,0 50,1 100,0
Membership function PB: Points list: 50,0 100,1 127,1

19

APPENDIX C
TOGAI AND HANDWRITTEN CODE FOR SINGLE PENDULUM

* .EXPORT _Mpos
* .EXPORT _Mrate
* .EXPORT _Theta
* .EXPORT _dTheta
* .EXPORT _Motor
* .EXPORT _PENDULUM1
* .EXPORT _PENDULUM1_init
; Input VARs

DEFSEG ramvars,START=$a
SEG ramvars
ORG $a

PENDULUM1_var:
_Mpos:

RMB 1
_Mrate:

RMB 1
_Theta:

RMB 1
_dTheta:

RMB 1
; Output VARs
_Motor:

RMB 1
; Hidden VARs
PENDULUM1_temp:
; Input MEMBER temps
; MEMBER Z(Theta)

RMB 1
; MEMBER Z(dTheta)

RMB 1
; MEMBER NS(Theta)

RMB 1
; MEMBER PS(Theta)

RMB 1
; MEMBER PB(dTheta)

RMB 1
; MEMBER NU(Theta)

RMB 1

20

; MEMBER PS(dTheta)
RMB 1

; MEMBER NS(dTheta)
RMB 1

; MEMBER NB(dTheta)
RMB 1

; MEMBER PU(Theta)
RMB 1

; MEMBER NB(Theta)
RMB 1

; MEMBER PB(Theta)
RMB 1

; Output VAR temps
RMB 7
DEFSEG romvars,START=$f3e5
SEG romvars
ORG $f3e5

_PENDULUM1:
FDB PENDULUM1_var
FDB PENDULUM1_temp
FDB PENDULUM1_inmbf
FDB PENDULUM1_outmbf
FDB PENDULUM1_code

* .PAGE
; Input MEMBER table

PENDULUM1_inmbf:
FDB plZTheta
FDB plZdTheta
FDB plPMpos
FDB plNSTheta
FDB plZMpos
FDB plPBMrate
FDB plZMrate
FDB plNMpos
FDB plPSTheta
FDB plNBMrate
FDB plPBdTheta
FDB plNUTheta
FDB plPSdTheta
FDB plNSdTheta
FDB plNBdTheta
FDB plPUTheta
FDB plNBTheta
FDB plPBTheta

21

; MEMBER Z(Theta)
plZTheta:

FCB -5,0
FCB 0,255
FCB 5,0
FCB 127,0

; MEMBER Z(dTheta)
plZdTheta:

FCB -20,0
FCB -1,255
FCB 20,0
FCB 127,0

; MEMBER P(Mpos)
plPMpos:

FCB -1,0
FCB 20,255
FCB 127,255

; MEMBER NS(Theta)
plNSTheta:

FCB -26,0
FCB -10,255
FCB 0,0
FCB 127,0

; MEMBER Z(Mpos)
plZMpos:

FCB -10,0
FCB -1,255
FCB 10,0
FCB 127,0

; MEMBER PB(Mrate)
plPBMrate:

FCB 0,0
FCB 10,255
FCB 127,255

; MEMBER Z(Mrate)
plZMrate:

FCB -5,0
FCB 0,255
FCB 5,0
FCB 127,0

; MEMBER N(Mpos)
plNMpos:

FCB -20,255
FCB -1,0
FCB 127,0

22

; MEMBER PS(Theta)
plPSTheta:

FCB 0,0
FCB 10,255
FCB 25,0
FCB 127,0

; MEMBER NB(Mrate)
plNBMrate:

FCB -10,255
FCB 0,0
FCB 127,0

; MEMBER PB(dTheta)
plPBdTheta:

FCB 20,0
FCB 50,255
FCB 127,255

; MEMBER NU(Theta)
plNUTheta:

FCB -60,0
FCB -30,255
FCB -15,0
FCB 127,0

; MEMBER PS(dTheta)
plPSdTheta:

FCB 0,0
FCB 20,255
FCB 40,0
FCB 127,0

; MEMBER NS(dTheta)
plNSdTheta:

FCB -40,0
FCB -20,255
FCB 0,0
FCB 127,0

; MEMBER NB(dTheta)
plNBdTheta:

FCB -50,255
FCB -20,0
FCB 127,0

; MEMBER PU(Theta)
plPUTheta:

FCB 15,0
FCB 30,255
FCB 60,0
FCB 127,0

23

; MEMBER NB(Theta)
plNBTheta:

FCB -80,255
FCB -50,0
FCB 127,0

; MEMBER PB(Theta)
plPBTheta:

FCB 50,0
FCB 80,255
FCB 80,255
FCB 127,255

* .PAGE
; Output MEMBER table

PENDULUM1_outmbf:
; MEMBER Z(Motor)
; M 6391.67 A 50 H 1

FCB $23,$06
FCB $C4,$10,$03

; MEMBER PB(Motor)
; M 11803.8 A 52 H 1

FCB $62,$06
FCB $46,$A9,$05

; MEMBER PS(Motor)
; M 8936.13 A 50.25 H 1

FCB $2B,$06
FCB $2D,$49,$04

; MEMBER NB(Motor)
; M 1508.67 A 53 H 1

FCB $81,$06
FCB $3B,$B9,$00

; MEMBER NS(Motor)
; M 3872.21 A 49.75 H 1

FCB $1B,$06
FCB $6D,$DB,$01

* .PAGE
; Knowledge base code
; PROJECT PENDULUM1
PENDULUM1_code:
; MEMBER Z(Theta)

FCB $01,$00,$02
FCB $10,$00

; MEMBER Z(dTheta)
FCB $01,$02,$03
FCB $10,$01

24

; MEMBER NS(Theta)
FCB $01,$06,$02
FCB $10,$02

; MEMBER PS(Theta)
FCB $01,$10,$02
FCB $10,$03

; MEMBER PB(dTheta)
FCB $01,$14,$03
FCB $10,$04

; MEMBER NU(Theta)
FCB $01,$16,$02
FCB $10,$05

; MEMBER PS(dTheta)
FCB $01,$18,$03
FCB $10,$06

; MEMBER NS(dTheta)
FCB $01,$1A,$03
FCB $10,$07

; MEMBER NB(dTheta)
FCB $01,$1C,$03
FCB $10,$08

; MEMBER PU(Theta)
FCB $01,$1E,$02
FCB $10,$09

; MEMBER NB(Theta)
FCB $01,$20,$02
FCB $10,$0A

; MEMBER PB(Theta)
FCB $01,$22,$02
FCB $10,$0B

; FUZZY Pendulum_rules
; VAR Motor

FCB $12,$0C
; RULE Rule0001

FCB $0E,$00
FCB $0E,$01
FCB $05
FCB $0B,$00,$0C

; RULE Rule0053
FCB $01,$04,$00
FCB $0E,$02
FCB $05
FCB $0B,$05,$0C

; RULE Rule0052
FCB $01,$08,$00

25

FCB $0E,$00
FCB $05
FCB $0B,$00,$0C

; RULE Rule0046
FCB $01,$0A,$01
FCB $0E,$00
FCB $05
FCB $0B,$0A,$0C

; RULE Rule0055
FCB $01,$0C,$01
FCB $0E,$00
FCB $05
FCB $0B,$00,$0C

; RULE Rule0057
FCB $01,$0E,$00
FCB $0E,$03
FCB $05
FCB $0B,$0F,$0C

; RULE Rule0047
FCB $01,$12,$01
FCB $0E,$00
FCB $05
FCB $0B,$14,$0C

; RULE Rule0033
FCB $0E,$04
FCB $0E,$05
FCB $05
FCB $0B,$00,$0C

; RULE Rule0034
FCB $0E,$06
FCB $0E,$05
FCB $05
FCB $0B,$00,$0C

; RULE Rule0035
FCB $0E,$01
FCB $0E,$05
FCB $05
FCB $0B,$00,$0C

; RULE Rule0036
FCB $0E,$07
FCB $0E,$05
FCB $05
FCB $0B,$14,$0C

; RULE Rule0037
FCB $0E,$08

26

FCB $0E,$05
FCB $05
FCB $0B,$0F,$0C

; RULE Rule0038
FCB $0E,$04
FCB $0E,$09
FCB $05
FCB $0B,$05,$0C

; RULE Rule0039
FCB $0E,$06
FCB $0E,$09
FCB $05
FCB $0B,$0A,$0C

; RULE Rule0040
FCB $0E,$01
FCB $0E,$09
FCB $05
FCB $0B,$00,$0C

; RULE Rule0041
FCB $0E,$07
FCB $0E,$09
FCB $05
FCB $0B,$00,$0C

; RULE Rule0042
FCB $0E,$08
FCB $0E,$09
FCB $05
FCB $0B,$00,$0C

; RULE Rule0010
FCB $0E,$00
FCB $0E,$08
FCB $05
FCB $0B,$05,$0C

; RULE Rule0011
FCB $0E,$00
FCB $0E,$07
FCB $05
FCB $0B,$0A,$0C

; RULE Rule0012
FCB $0E,$03
FCB $0E,$08
FCB $05
FCB $0B,$05,$0C

; RULE Rule0013
FCB $0E,$03

27

FCB $0E,$07
FCB $05
FCB $0B,$00,$0C

; RULE Rule0002
FCB $0E,$02
FCB $0E,$07
FCB $05
FCB $0B,$05,$0C

; RULE Rule0008
FCB $0E,$02
FCB $0E,$01
FCB $05
FCB $0B,$0A,$0C

; RULE Rule0003
FCB $0E,$03
FCB $0E,$06
FCB $05
FCB $0B,$0F,$0C

; RULE Rule0009
FCB $0E,$03
FCB $0E,$01
FCB $05
FCB $0B,$14,$0C

; RULE Rule0006
FCB $0E,$02
FCB $0E,$08
FCB $05
FCB $0B,$05,$0C

; RULE Rule0007
FCB $0E,$03
FCB $0E,$04
FCB $05
FCB $0B,$0F,$0C

; RULE Rule0014
FCB $0E,$02
FCB $0E,$06
FCB $05
FCB $0B,$00,$0C

; RULE Rule0015
FCB $0E,$02
FCB $0E,$04
FCB $05
FCB $0B,$0F,$0C

; RULE Rule0016
FCB $0E,$00

28

FCB $0E,$06
FCB $05
FCB $0B,$14,$0C

; RULE Rule0017
FCB $0E,$00
FCB $0E,$04
FCB $05
FCB $0B,$0F,$0C

; RULE Rule0018
FCB $0E,$08
FCB $0E,$0A
FCB $05
FCB $0B,$00,$0C

; RULE Rule0022
FCB $0E,$08
FCB $0E,$0B
FCB $05
FCB $0B,$05,$0C

; RULE Rule0024
FCB $0E,$07
FCB $0E,$0A
FCB $05
FCB $0B,$00,$0C

; RULE Rule0025
FCB $0E,$01
FCB $0E,$0A
FCB $05
FCB $0B,$0A,$0C

; RULE Rule0026
FCB $0E,$06
FCB $0E,$0A
FCB $05
FCB $0B,$14,$0C

; RULE Rule0027
FCB $0E,$04
FCB $0E,$0A
FCB $05
FCB $0B,$0F,$0C

; RULE Rule0029
FCB $0E,$04
FCB $0E,$0B
FCB $05
FCB $0B,$00,$0C

; RULE Rule0030
FCB $0E,$06

29

FCB $0E,$0B
FCB $05
FCB $0B,$00,$0C

; RULE Rule0031
FCB $0E,$01
FCB $0E,$0B
FCB $05
FCB $0B,$14,$0C

; RULE Rule0032
FCB $0E,$07
FCB $0E,$0B
FCB $05
FCB $0B,$0A,$0C
FCB $0A,$0C,$04
FCB $16, $4, $80
FCB $00

_PENDULUM1_init:
LDX #_PENDULUM1
RTS

OPTIONS
END

PROJECT PENDULUM1

 OPTIONS
 DESCRIPTION=”This is a single inverted pendulum”
 GRIDSPACE=0.5,0
 GRIDSHOW=”ON”
 GRIDSNAP=”ON”
 ICONSCALE=1
 NORMALSIZE=”ON”
 REDUCETOFIT=”OFF”
 SHOWTOOLS=”ON”
 VIEWORIGIN=-0.1,-0.1
 VIEWSCALE=1
 END

 VAR Theta

 OPTIONS
 ICONCOLOR=0
 ICONPOS=1.5,2
 GRIDSPACE=0,0
 GRIDSHOW=”ON”

30

 GRIDSNAP=”OFF”
 END
 TYPE signed byte
 DEFAULT 0

 MEMBER NB

 OPTIONS
 ICONCOLOR=1
 END
 POINTS -128,1 -80,1 -50,0
 END

 MEMBER NS

 OPTIONS
 ICONCOLOR=2
 END
 POINTS -25.18867925,0 -10,1 0,0
 END

 MEMBER Z

 OPTIONS
 ICONCOLOR=3
 END
 POINTS -5,0 0,1 5,0
 END

 MEMBER PS

 OPTIONS
 ICONCOLOR=4
 END
 POINTS 0,0 10,1 25.18867925,0
 END

 MEMBER PB

 OPTIONS
 ICONCOLOR=5
 END
 POINTS 50,0 80,1 80,1 127,1
 END

31

 MEMBER NU

 OPTIONS
 ICONCOLOR=5
 OUTPUTSCOPE=”PRIVATE”
 END
 POINTS -60,0 -30,1 -14.38679245,0
 END

 MEMBER PU

 OPTIONS
 ICONCOLOR=6
 OUTPUTSCOPE=”PRIVATE”
 END
 POINTS 15.58962264,0 30,1 60,0
 END
 END

 VAR dTheta

 OPTIONS
 ICONCOLOR=0
 ICONPOS=1.5,3.5
 GRIDSPACE=0,0
 GRIDSHOW=”ON”
 GRIDSNAP=”ON”
 END
 TYPE signed byte

 MEMBER NB

 OPTIONS
 ICONCOLOR=1
 END
 POINTS -128,1 -50,1 -20,0
 END

 MEMBER NS

 OPTIONS
 ICONCOLOR=2
 END
 POINTS -40,0 -20,1 0,0
 END

32

 MEMBER Z

 OPTIONS
 ICONCOLOR=3
 END
 POINTS -20,0 -0.5,1 20,0
 END

 MEMBER PS

 OPTIONS
 ICONCOLOR=4
 END
 POINTS 0,0 20,1 40,0
 END

 MEMBER PB

 OPTIONS
 ICONCOLOR=5
 END
 POINTS 20,0 50,1 127,1
 END
 END

 VAR Motor

 OPTIONS
 ICONCOLOR=0
 ICONPOS=5.5,2.5
 GRIDSPACE=0,0
 GRIDSHOW=”ON”
 GRIDSNAP=”ON”
 END
 TYPE signed byte

 MEMBER NB

 OPTIONS
 ICONCOLOR=1
 END
 POINTS -128,1 -100,1 -50,0
 END

 MEMBER NS

33

 OPTIONS
 ICONCOLOR=2
 END
 POINTS -100,0 -50,1 -0.5,0
 END

 MEMBER Z

 OPTIONS
 ICONCOLOR=3
 END
 POINTS -50,0 -0.5,1 50,0
 END

 MEMBER PS

 OPTIONS
 ICONCOLOR=4
 END
 POINTS -0.5,0 50,1 100,0
 END

 MEMBER PB

 OPTIONS
 ICONCOLOR=5
 END
 POINTS 50,0 100,1 127,1
 END
 END

 VAR Mrate

 OPTIONS
 ICONCOLOR=0
 ICONPOS=3,4
 GRIDSPACE=0,0
 GRIDSHOW=”ON”
 GRIDSNAP=”ON”
 END
 TYPE signed byte

 MEMBER NB

 OPTIONS
 ICONCOLOR=1

34

 END
 POINTS -128,1 -10,1 0,0
 END

 MEMBER Z

 OPTIONS
 ICONCOLOR=3
 END
 POINTS -4.716850829,0 0,1 5.069060773,0.002673796791
 END

 MEMBER PB

 OPTIONS
 ICONCOLOR=5
 END
 POINTS 0,0 10,1 127,1
 END
 END

 FUZZY Pendulum_rules

 OPTIONS
 ICONCOLOR=0
 ICONPOS=3.5,2.5
 OUTPUTSCOPE=”PRIVATE”
 END

 RULE Rule0001

 OPTIONS
 ENABLE=”ON”
 END

 IF (Theta IS Z) AND (dTheta IS Z) THEN
 Motor=Z
 END

 RULE Rule0050

 OPTIONS
 ENABLE=”ON”
 END

35

 IF (Mrate IS Z) AND (Theta IS Z) THEN
 Motor=Z
 END

 RULE Rule0046

 OPTIONS
 ENABLE=”ON”
 END

 IF (Mrate IS PB) AND (Theta IS Z) THEN
 Motor=PS
 END

 RULE Rule0047

 OPTIONS
 ENABLE=”ON”
 END

 IF (Mrate IS NB) AND (Theta IS Z) THEN
 Motor=NS
 END

 RULE Rule0033

 OPTIONS
 ENABLE=”ON”
 END

 IF (dTheta IS PB) AND (Theta IS NU) THEN
 Motor=Z
 END

 RULE Rule0034

 OPTIONS
 ENABLE=”ON”
 END

 IF (dTheta IS PS) AND (Theta IS NU) THEN
 Motor=Z
 END

36

 RULE Rule0035

 OPTIONS
 ENABLE=”ON”
 END

 IF (dTheta IS Z) AND (Theta IS NU) THEN
 Motor=Z
 END

 RULE Rule0036

 OPTIONS
 ENABLE=”ON”
 END

 IF (dTheta IS NS) AND (Theta IS NU) THEN
 Motor=NS
 END

 RULE Rule0037

 OPTIONS
 ENABLE=”ON”
 END

 IF (dTheta IS NB) AND (Theta IS NU) THEN
 Motor=NB
 END

 RULE Rule0038

 OPTIONS
 ENABLE=”ON”
 END

 IF (dTheta IS PB) AND (Theta IS PU) THEN
 Motor=PB
 END

 RULE Rule0039

 OPTIONS
 ENABLE=”ON”
 END

37

 IF (dTheta IS PS) AND (Theta IS PU) THEN
 Motor=PS
 END

 RULE Rule0040

 OPTIONS
 ENABLE=”ON”
 END

 IF (dTheta IS Z) AND (Theta IS PU) THEN
 Motor=Z
 END

 RULE Rule0041

 OPTIONS
 ENABLE=”ON”
 END

 IF (dTheta IS NS) AND (Theta IS PU) THEN
 Motor=Z
 END

 RULE Rule0042

 OPTIONS
 ENABLE=”ON”
 END

 IF (dTheta IS NB) AND (Theta IS PU) THEN
 Motor=Z
 END

 RULE Rule0010

 OPTIONS
 ENABLE=”ON”
 END

 IF (Theta IS Z) AND (dTheta IS NB) THEN
 Motor=PB
 END

38

 RULE Rule0011

 OPTIONS
 ENABLE=”ON”
 END

 IF (Theta IS Z) AND (dTheta IS NS) THEN
 Motor=PS
 END

 RULE Rule0012

 OPTIONS
 ENABLE=”ON”
 END

 IF (Theta IS PS) AND (dTheta IS NB) THEN
 Motor=PB
 END

 RULE Rule0013

 OPTIONS
 ENABLE=”ON”
 END

 IF (Theta IS PS) AND (dTheta IS NS) THEN
 Motor=Z
 END

 RULE Rule0002

 OPTIONS
 ENABLE=”ON”
 END

 IF (Theta IS NS) AND (dTheta IS NS) THEN
 Motor=PB
 END

 RULE Rule0008

 OPTIONS
 ENABLE=”ON”
 END

39

 IF (Theta IS NS) AND (dTheta IS Z) THEN
 Motor=PS
 END

 RULE Rule0003

 OPTIONS
 ENABLE=”ON”
 END

 IF (Theta IS PS) AND (dTheta IS PS) THEN
 Motor=NB
 END

 RULE Rule0009

 OPTIONS
 ENABLE=”ON”
 END

 IF (Theta IS PS) AND (dTheta IS Z) THEN
 Motor=NS
 END

 RULE Rule0006

 OPTIONS
 ENABLE=”ON”
 END

 IF (Theta IS NS) AND (dTheta IS NB) THEN
 Motor=PB
 END

 RULE Rule0007

 OPTIONS
 ENABLE=”ON”
 END

 IF (Theta IS PS) AND (dTheta IS PB) THEN
 Motor=NB
 END

40

 RULE Rule0014

 OPTIONS
 ENABLE=”ON”
 END

 IF (Theta IS NS) AND (dTheta IS PS) THEN
 Motor=Z
 END

 RULE Rule0015

 OPTIONS
 ENABLE=”ON”
 END

 IF (Theta IS NS) AND (dTheta IS PB) THEN
 Motor=NB
 END

 RULE Rule0016

 OPTIONS
 ENABLE=”ON”
 END

 IF (Theta IS Z) AND (dTheta IS PS) THEN
 Motor=NS
 END

 RULE Rule0017

 OPTIONS
 ENABLE=”ON”
 END

 IF (Theta IS Z) AND (dTheta IS PB) THEN
 Motor=NB
 END

 RULE Rule0018

 OPTIONS
 ENABLE=”ON”
 END

41

 IF (dTheta IS NB) AND (Theta IS NB) THEN
 Motor=Z
 END

 RULE Rule0022

 OPTIONS
 ENABLE=”ON”
 END

 IF (dTheta IS NB) AND (Theta IS PB) THEN
 Motor=PB
 END

 RULE Rule0024

 OPTIONS
 ENABLE=”ON”
 END

 IF (dTheta IS NS) AND (Theta IS NB) THEN
 Motor=Z
 END

 RULE Rule0025

 OPTIONS
 ENABLE=”ON”
 END

 IF (dTheta IS Z) AND (Theta IS NB) THEN
 Motor=PS
 END

 RULE Rule0026

 OPTIONS
 ENABLE=”ON”
 END

 IF (dTheta IS PS) AND (Theta IS NB) THEN
 Motor=NS
 END

42

 RULE Rule0027

 OPTIONS
 ENABLE=”ON”
 END

 IF (dTheta IS PB) AND (Theta IS NB) THEN
 Motor=NB
 END

 RULE Rule0029

 OPTIONS
 ENABLE=”ON”
 END

 IF (dTheta IS PB) AND (Theta IS PB) THEN
 Motor=Z
 END

 RULE Rule0030

 OPTIONS
 ENABLE=”ON”
 END

 IF (dTheta IS PS) AND (Theta IS PB) THEN
 Motor=Z
 END

 RULE Rule0031

 OPTIONS
 ENABLE=”ON”
 END

 IF (dTheta IS Z) AND (Theta IS PB) THEN
 Motor=NS
 END

 RULE Rule0032

 OPTIONS
 ENABLE=”ON”
 END

43

 IF (dTheta IS NS) AND (Theta IS PB) THEN
 Motor=PS
 END
 END

 CONNECT
 FROM Theta
 TO Pendulum_rules
 END

 CONNECT
 FROM dTheta
 TO Pendulum_rules
 END

 CONNECT
 FROM Pendulum_rules
 TO Motor
 END

 CONNECT
 FROM Mrate
 TO Pendulum_rules
 END
END

SIMULATE Simulation0000

 OPTIONS
 DURATION=6
 SAMPLETIME=0.001
 END

 CHART Chart0000
 HCHART=”time”
 VCHART=”Motor”
 VCHART=”x3"
 TITLE=”Single Pendulum”
 HTITLE=”time, seconds”
 VTITLE=”angle, radians”
 HMAX=”6"
 HMIN=”0"
 HTICK=”0.5"
 VMAX=”1"
 VMIN=”-1"

44

 VTICK=”0.1"
 END

 CSPLOT CSPlot0000
 XVARNAME=”Theta”
 YVARNAME=”dTheta”
 BIND=”Theta=-128"
 BIND=”dTheta=-128"
 END

 MODEL Model0000

 OPTIONS
 DIFFEQ=”OFF”
 END

#CODE
pi=3.1415926;
dt=timestep;
gain=10;

x1=0;
x2=0;
x3=0;
x4=0;
pend_angle=x3;

cpr=256/6.28; /* counts/rad */
cprps=256/20; /* counts/rad/s */
torpc=.67/256; /* torque/count, (Nm) */
cpmrps=256/3/10; /* counts per motor rad/s */
#END_CODE

#CODE
Motorf=floor(Motor+.5);
tm=gain*torpc*Motorf;
if tm>.67 then tm=.67; end
if tm<-.67 then tm=-.67; end

s3=sin(x3);
c3=cos(x3);

den=2*c3*c3-27;

45

x1d=x2;
x3d=x4;

x2d=1/32*(72*s3*x4*x4+40*c3*x4+45*x2-3136*c3*s3-45000*tm)/den;
x4d=1/4*(8*c3*s3*x4*x4+60*x4-5000*c3*tm+5*c3*x2-4704*s3)/den;

x1=x1+x1d*dt;
x2=x2+x2d*dt;
x3=x3+x3d*dt;
x4=x4+x4d*dt;

motor_angle=x1;
pend_angle=pend_angle+x3d*dt;

if x1>pi then x1=x1-2*pi; end
if x1<-pi then x1=x1+2*pi; end
if x3>pi then x3=x3-2*pi; end
if x3<-pi then x3=x3+2*pi; end

Theta=x3*cpr; /* counts */
dTheta=x4*cprps;
Mrate=x2*cpmrps;

if Theta>127 then Theta=127; end
if Theta<-127 then Theta=-127; end
if dTheta>127 then dTheta=127; end
if dTheta<-127 then dTheta=-127; end
if Mrate>127 then Mrate=127; end
if Mrate<-127 then Mrate=-127; end

Theta=floor(Theta+.5);
dTheta=floor(dTheta+.5);
Mrate=floor(Mrate+.5);
#END_CODE
 END
END

;TEST PROGRAM FOR INVERTED ONE ARM PENDULUM USING THE 68HC811E2
MICROCONTROLLER
;BY TOM SUTHERLAND
;
; 1/7/94 with mods through 7/8/94

46

;**
;
;DEFINITIONS FOR REGISTER LOCATIONS
;Purpose of initializing each of the registers is to be able to perform
;bit manipulations on the registers without having to use indexed
;addressing.

ORIG_INIT EQU $103D ;Location of INIT register before
;registers are remapped to page 0.

;Location of registers after being remapped to page 0

PORTA EQU $0000 ;I/O Port A
PIOC EQU $0002 ;Parallel I/O Control Register
PORTC EQU $0003 ;I/O Port C
PORTB EQU $0004 ;Output Port B
PORTCL EQU $0005 ;Alternate Latched Port C
DDRC EQU $0007 ;Data Direction for Port C
PORTD EQU $0008 ;I/O Port D
DDRD EQU $0009 ;Data Direction for Port D
PORTE EQU $000A ;Input Port E
CFORC EQU $000B ;Compare Force Register
OC1M EQU $000C ;OC1 Action Mask Register
OC1D EQU $000D ;OC1 Action Data Register
TCNT EQU $000E ;Timer Counter Register (16 bits)
TIC1 EQU $0010 ;Input Capture 1 Register (16 bits)
TIC2 EQU $0012 ;Input Capture 2 Register (16 bits)
TIC3 EQU $0014 ;Input Capture 3 Register (16 bits)
TOC1 EQU $0016 ;Output Compare 1 Register (16 bits)
TOC2 EQU $0018 ;Output Compare 2 Register (16 bits)
TOC3 EQU $001A ;Output Compare 3 Register (16 bits)
TOC4 EQU $001C ;Output Compare 4 Register (16 bits)
TI4O5 EQU $001E ;Output Compare 5 / Input Capture 4
TCTL1 EQU $0020 ;Timer Control Register 1
TCTL2 EQU $0021 ;Timer Control Register 2
TMSK1 EQU $0022 ;Timer Interrupt Mask Register 1
TFLG1 EQU $0023 ;Timer Interrupt Flag Register 1
TMSK2 EQU $0024 ;Timer Interrupt Mask Register 2
TFLG2 EQU $0025 ;Timer Interrupt Flag Register 2
PACTL EQU $0026 ;Pulse Accumulator Control Register
PACNT EQU $0027 ;Pulse Accumulator Count Register
SPCR EQU $0028 ;SPI Control Register
SPSR EQU $0029 ;SPI Status Register
SPDR EQU $002A ;SPI Data Register
BAUD EQU $002B ;SCI Baud Rate Control

47

SCCR1 EQU $002C ;SCI Control Register 1
SCCR2 EQU $002D ;SCI Control Register 2
SCSR2 EQU $002E ;SCI Status Register
SCDR EQU $002F ;SCI Data Register
ADCTL EQU $0030 ;A/D Control Register
ADR1 EQU $0031 ;A/D Result Register 1
ADR2 EQU $0032 ;A/D Result Register 2
ADR3 EQU $0033 ;A/D Result Register 3
ADR4 EQU $0034 ;A/D Result Register 4
BPROT EQU $0035 ;EEPROM Block Protect Register
OPTION EQU $0039 ;System Configuration Options
COPRST EQU $003A ;Arm/Reset COP Timer Circuit
PPROG EQU $003B ;EEPROM Program Control Register
HPRIO EQU $003C ;High Priority I-bit interrupt & misc
INIT EQU $003D ;Ram and I/O Mapping Register
TEST1 EQU $003E ;Factory TEST Control Register
CONFIG EQU $003F ;COP, ROM, and EEPROM Enables

;**
;DEFINITIONS FOR RAM LOCATIONS (192 bytes available)

 DEFSEG ramst, START=$40

 SEG ramst
ORG $0040 ;Point to the first byte of RAM

POSITION: RMB 2 ;POSITION OF FREE ARM 1.
MSB_POS: RMB 1 ;8-BIT POSITION SAVED FROM VELOCITY.

OLD_POS: RMB 2 ;SAVE LAST POSITION TO GET RATE.

TIMER: RMB 3 ;INCREMENTED EVERY X ms

;**
;DEFINITIONS FOR EEPROM LOCATIONS
;
;These vectors point to the corresponding locations in memory.

EEPROM_START EQU $F800 ;Location of EEPROM in memory
VECTOR_TIC1 EQU $FFEE ;Location of vector for TIC1
VECTOR_TIC2 EQU $FFEC ;Location of vector for TIC2
VECTOR_TIC3 EQU $FFEA ;Location of vector for TIC3
VECTOR_TOC2 EQU $FFE6 ;Location of vector for TOC2
VECTOR_RESET EQU $FFFE ;Location of vector for reset

48

;**
;PROGRAM CODE

MFPL EQU $f800 ;Location of run-time module

DEFSEG stkseg, START=$ff
SEG stkseg

ORG $ff
STAK DS $1

DEFSEG entseg, START=$ffe4
SEG entseg

ORG $ffe4
FDB ENTRY

DEFSEG INTTOC2, START=VECTOR_TOC2
SEG INTTOC2
ORG VECTOR_TOC2
FDB MAIN_ROUTINE

DEFSEG INTRESET, START=VECTOR_RESET
SEG INTRESET
ORG VECTOR_RESET
FDB START

DEFSEG rom, START=$f800
SEG rom
ORG $f800 ;Set PC to start of EEPROM

;Initialization code.

START: CLR ORIG_INIT ;Remap both the registers and
;the ram to page 0. This reduces
;the available ram to 192 bytes,
;but allows use of the bit
;manipulation and test instructions
;with direct addressing. This
;remapping can only be done during
;the first 64 clock cycles after
;reset.

49

ENTRY: LDS #$00FF ;Initialize the stack pointer.
LDAA #$30
STAA BAUD ;SET SERIAL TO 9600 BAUD
LDAA #$0C ;SET BITS TO ENABLE RECV. AND TRANSMIT.
STAA SCCR2 ;ENABLE SERIAL I/O.

LDAA #$00 ;SET PORT-C AS INPUTS.
STAA DDRC ; “ “

LDAA #$80 ;SET INITIAL VALUE IN D/A PORT.
JSR MOTOR_DRIVE ; “ “ “

;SET UP ADC REGISTERS.
LDAA #$80 ;SET ADPU BIT, TO ENABLE CHARGE PUMP FOR ADC.
STAA OPTION ; “ “
LDAA #$20 ;SET BITS IN REG. ADCTL:SCAN=1,MULT=0
STAA ADCTL ; “ “

CLRA ;INITIALIZE COUNT TO ZERO
STAA TIMER
STAA TIMER+1
STAA TIMER+2

BCLR TCTL1,$80 ;TOGGLE OUTPUT ON SUCCESSFUL COMPARE
BSET TCTL1,$40

LDD TCNT ;ADD 60000 TO MAIN TIMER
ADDD #60000
STD TOC2 ;STORE VALUE IN COMPARATOR
LDAA #$40
STAA TFLG1 ;CLEAR TIMER FLAG
BSET TMSK1,$40 ;TIMER OUTPUT COMPARE 2
CLI ;ENABLE INTERRUPTS

HANG: BRA HANG ;WAIT HERE FOR INTERRUPT

MAIN_ROUTINE: ;THIS IS THE INTERRUPT SERVICE ROUTINE

LDD TOC2
ADDD #60000 ;ADD 30 ms TO TOC2
STD TOC2

LDD #1 ;INCREMENT 24-BIT COUNT BY 1
ADDD TIMER+1
STD TIMER+1

50

LDAA #0
ADCA TIMER
STAA TIMER

LDAA #$40
STAA TFLG1 ;CLEAR TOC2 FLAG

LDAA ADR1 ;8-BIT A/D OF MOTOR TACH.
CLC ;REMOVE BIAS.
SUBA #$7F
JSR SND_WORD
STAA _Mrate ;SAVE FOR CONTROLLER.
BGE HEEP
COMA
INCA
LSRA
LSRA

; LSRA
LSRA
COMA
INCA
BRA HEEP1

HEEP LSRA
LSRA

; LSRA
LSRA

HEEP1 ADDA _Mpos
STAA _Mpos
JSR SND_WORD
JSR ARM_VELOCITY ;GET FREE ARM RATE (12-BIT) [SHML]
STAA _dTheta ;SAVE FOR CONTROLLER.

; JSR SND_WORD
LDD POSITION ;GET CURRENT POSITION.
STD OLD_POS ;SAVE FOR NEXT RATE CALC.
LDAA #$80 ;CONSTANT TO MATCH MFPL INPUT SCALE
CLC
SUBA MSB_POS ;8-BIT POSITION OF FREE ARM
STAA _Theta ;SAVE FOR CONTROLLER

; JSR SND_WORD
LDX #_PENDULUM1 ;MicroFPL NAME
JSR MFPL ;DETERMINE ACTION THAT SHOULD BE TAKEN.
LDAA #$7F ;CONSTANT TO SHIFT 0-255.
CLC
SUBA _MOTOR ;DO THE SHIFT

51

; JSR SND_WORD
CMPA #$40 ;LIMIT +SIDE.
BHS SKIP3 ;GO CHECK NEGATIVE VOLTS.
LDAA #$40 ;LIMIT TO +5 VOLTS.
BRA SKIP ;CAN’T BE NEGATIVE.

SKIP3: CMPA #$C0 ;LIMIT -SIDE.
BLS SKIP ;NOT TOO NEGATIVE.
LDAA #$C0 ;LIMIT TO -5 VOLTS.

SKIP: JSR MOTOR_DRIVE ;COMMAND MOTOR.
; JSR SND_WORD

LDAA #32
JSR SND_BYTE
RTI ;RETURN FROM INTERRUPT

;SUBROUTINE SECTION

MOTOR_DRIVE: COMA ;SUBROUTINE TO DRIVE MOTOR.
INCA ;REVERSE SIGN OF DRIVE.
STAA PORTB ;SEND 8 BIT DATA TO DIGITAL-TO-ANALOG CON

VERTER.
RTS ;RETURN FROM SUBROUTINE MOTOR_DRIVE.

ARM_VELOCITY: ;SUBROUTINE, DETERMINING FREE ARM’S VELOCITY.
LDAB PORTD ;READ RESOLVER-TO-DIGITAL CONVERTER,4 BITS

(LOW OF 12 BITS).
LDAA PORTC ;READ RESOLVER-TO-DIGITAL CONVERTER,8 BITS

(HIGH OF 12 BITS).
STAA MSB_POS ;SAVE CURRENT 8-BIT POSITION.
LSLB ;SHIFT ONE BIT LEFT.
LSLB ; “ “
LSRD ;SHIFT DOUBLE ACC‘AB’ RIGHT.
LSRD ; “ “
LSRD ; “ “
LSRD ; “ “
CLC ;CLEAR CARRY BIT.
STD POSITION ;STORE THE FREE ARM’S CURRENT POSITION.
SUBD OLD_POS ;SUBTRACT POSITIONS.
BMI NEG ;CHECK SIGN OF VELOCITY.

POS: CPD #$7F ;SEE IF MAX POSITIVE EXCEEDED.
BCS VEL1 ;NOT POSITIVE MAX YET.
LDAB #$7F ;MAX VALUE OF 127.
BRA VEL1 ;THROUGH WITH POSITIVE.

NEG: CPD #$FF7F ;SEE IF MAX NEGATIVE EXCEEDED.
BCC VEL1 ;DON’T LIMIT.
LDAB #$F0 ;MAX VALUE OF -128.

52

VEL1: TBA ;PUT IN A-REGISTER.
COMA
INCA
RTS ;RETURN.

SND_WORD: ;CONVERT ACC‘A’ TO ASCII AND SEND TO SERIAL
PORT.

PSHA ;SAVE ORIGINAL DATA.
PSHA ;SAVE ORIGINAL DATA.
LSRA ;SHIFT HIGH NIBBLE RIGHT.
LSRA ; “ “
LSRA ; “ “
LSRA ; “ “
JSR HEX_ASCII ;CONVERT HIGH NIBBLE TO ASCII.
JSR SND_BYTE ;SEND HIGH NIBBLE TO SERIAL PORT.
PULA ;GET ORIGINAL DATA.
JSR HEX_ASCII ;CONVERT LOW NIBBLE TO ASCII.
JSR SND_BYTE ;SEND LOW NIBBLE TO SERIAL PORT.
PULA ;RESTORE ORIGINAL DATA.
RTS ;RETURN FROM SND_WORD SUBROUTINE

HEX_ASCII: ;SUBROUTINE TO CONVERT FROM HEX TO ASCII.
ANDA #$0F ;MASKOFF LOW NIBBLE.
CMPA #$09
BGT HEX_A_CHAR ;IF ITS GREATER THAN 9hex ITS A CHARACTER.
ADDA #$30 ;ADD 30hex TO MAKE A NUMBER ASCII.
RTS ;RETURN FROM HEX_ASCCI SUBR

HEX_A_CHAR: ADDA #$37 ;ADD 37hex TO NIBBLE.
RTS ;RETURN FROM HEX_ASCII SUBROUTINE.

SND_BYTE: ;SUBROUTINE TO SEND A BYTE TO SERIAL PORT.
BRCLR SCSR2,$80,$
STAA SCDR

SND_WAIT: BRCLR SCSR2,$80,$
RTS

RECV_BYTE: BRCLR SCSR2,$20,$;WAIT FOR CHARACTER IN BUFFER
LDAA SCDR ;READ CHARACTER.
RTS ;RETURN FROM SUBROUTINE RECV_BYTE.

 rem c:\til\mfpl6811 -v c:\til\penddown

53

copy onearm.asm+penddown.asm+tmpend temp.asm
avmac11 temp.asm >penddown.lst

avlink penddown.mot = temp.obj, rtm6811.obj OF=MOT -PS(RTM_ROMSEG,f800h) -
PS(rom,fddfh) -PS(RAMSEG,48h) -PS(RAMVARS,51H)

AVLINK —— LOAD MAP
For: Mixed Languages

RELOCATED SEGMENTS - CLASS ‘M’

SEGMENT NAME START STOP LENGTH ovl/cat def/undef
RAMSEG 0000 0008 0009 Concat Defined

RAMVARS 000a 001f 0016 Concat Defined
RAMST 0040 0047 0008 Concat Defined
STKSEG 00ff 00ff 0001 Concat Defined

REGS 1000 103f 0040 Overld Defined
RTM_ROMSEG f800 fbe6 03e7 Concat Defined

ROMVARS fbe7 fdde 01f8 Concat Defined
ROM fddf fed8 00fa Concat Defined

ENTSEG ffe4 ffe5 0002 Concat Defined
INTTOC2 ffe6 ffe7 0002 Concat Defined

INTRESET fffe ffff 0002 Concat Defined

ZERO LENGTH SEGMENTS

SEGMENT START
PAGE0 0000
CODE 0000
DATA 0000

No Transfer Address.

pendulum.mot=temp.obj, (later, improved mapping)
rtm6811.obj
OF=MOT
-PS(RTM_ROMSEG,F800H)
-PS(ROM,FE47H)
-PS(RAMSEG,48H)
-PS(RAMVARS,51H)

-PS(ROMVARS,FBE7H)

54

Object code in ASCII format as sent to the 6811 by Procom

S107FFE4FDE8FE280A
S105FFFEFDDF21
S123FDDF7F103DCC0600FD00438E00FF8630972B860C972D860097078680BDFE858600B720
S123FDFF004286809739862097304FB70045B70046B70047152080142040DC0EC3EA60DD18
S123FE1F18864097231422400EDC18C3EA60DD18CC0001F30046FD00468600B90045B70029
S123FE3F4586409723BDFE88B7000BFC0040FD004386809003B7000ACEFBE7BDF800F600A4
S123FE5F0C58588680B0000C434CBDFE8520BA963185802709847F448A80B7004239438412
S123FE7F7F44B7004239970439D608960358585858040404040CFD0040B3004381002B03C1
S123FE9F17200317434C39363644444444BDFEBBBDFEC732BDFEBBBDFEC73239840F810900
S11DFEBF2E038B30398B3739132E80FC972F132E80FC39132E20FC962F3931
S123FBE7000A000DFBF1FC65FC7EFC09FC11FC19FC1FFC27FC2FFC37FC3DFC45FC4DFC5743
S123FC07FC5DF600FFFF0A007F00EC00FFFF14007F00140032FF7FFFC400D8FFEC007F00BD
S123FC27000014FF28007F00D800ECFF00007F00CEFFEC007F00140028FF3C007F00FF0090
S123FC4714FF1E007F00E200ECFFECFFFF007F00B0FFC4007F003C0050FF50FF7FFF300732
S123FC673C97032707E42C029F07F9D8007A079AA1063A072D05050100001000010201108D
S123FC8701010401100201060010030108011004010A011005010C011006010E001007019C
S123FCA7100010080112001009011400100A011600100B120C0E000E01050B000C0E020E0F
S123FCC703050B000C0E040E03050B000C0E010E03050B000C0E050E03050B050C0E060E18
S123FCE703050B0A0C0E020E07050B0F0C0E040E07050B140C0E010E07050B000C0E050EC8
S123FD0707050B000C0E060E07050B000C0E000E06050B0F0C0E000E05050B140C0E080EAE
S123FD2706050B0F0C0E080E05050B000C0E090E05050B0F0C0E090E01050B140C0E080E73
S123FD4704050B0A0C0E080E01050B050C0E090E06050B0F0C0E080E02050B0A0C0E090E61
S123FD6704050B000C0E090E02050B0A0C0E000E04050B050C0E000E02050B0A0C0E060E64
S123FD870A050B000C0E060E0B050B0F0C0E050E0A050B000C0E010E0A050B000C0E040E30
S123FDA70A050B000C0E020E0A050B0A0C0E020E0B050B000C0E040E0B050B000C0E010E1B
S11BFDC70B050B000C0E050E0B050B000C0A0C0216028000CEFBE73918
S123F800FF0000EE08FF0002201301400128012301290131013601370138FE0002A600087B
S123F820FF000281172D0220FECEF833161B1B163A6E007EF8787EF8897EF9167EF9597E13
S123F840F9867EF9BB7EF9C57EF9CD7EF9D47EF9E57EF9F07EFA727EFB0C7EFB2B7EFB4495
S123F8607EFB4B7EFB647EFB6B7EFB717EFB977EFBA87EFBAE7EFBC83901400128012401B3
S123F8802901D7015C015A015A18FE000218E6001808FE0000EE043AEE003CFE0000EE00DA
S123F8A018E60018083AA60018FF000238A1002E06E601377EF81AE600F70004E601F700B3
S123F8C0050808A10027EA2EEEE601F0000527E12521B000043DFD0006A600B00004B70012
S123F8E008FE00068600F600088F028FFB0005377EF81A50B000043DFD0006A600B00004EF
S123F900B70008FE00068600F600088F028F50FB0005377EF81A18FE000218E6001808FE31
S123F9200000EE043AEE003CFE0000EE0018E60018083AA60018FF000238A1002206E60182
S123F940377EF81AE600F70004E601F700050808A10027EA22EE7EF8C918FE000218E600F1
S123F9601808FE0000EE043AEE0018E600180818FF000218FE000018EE00183A18E6003A6E
S123F980A600367EF81A18FE000218E6001808FE0000EE043A18E600180818FF000218FE4A
S123F9A0000018EE00183A18E6008600C180250286FFE3008FA600367EF81A323311250100
S123F9C017367EF81A32331122F71720F432331B367EF81A32331B28082A04867F200286BB
S123F9E080367EF81A32331B240286FF367EF81AFE0000EE0218FE000218E600180818FF91
S123FA0000023AA60681002627A6028100262109A6068100261AA6028100261409A60281B1

55

S123FA2000262518FE0002180818FF00027EF81AA60681802412A6028180240C6801690206
S123FA4068046905690620E88600E602C10027FE3736A606E60538028F17FE0000EE001815
S123FA60FE000218E600180818FF00023AA7007EF81A8D6A323618E6003DEB008900B70015
S123FA8004E700323618E6013DEB018900FB00048900B70004E701A602BB0004A7023236BB
S123FAA018E6023DEB038900B70004E703323618E6033DEB048900FB00048900B70004E7A1
S123FAC0043218E6043DEB058900FB00048900B70004E705A606BB0004A7067EF81A18FE47
S123FAE0000018EE06FE0002E60008FF0002183A18FF0006FE0000EE0218FE000218E60094
S123FB00180818FF00023A18FE0006398DD086003337EB008900E700168600EB018900E779
S123FB2001168600EB02E7027EFA9EFE0000EE0018FE000218E600180818FF00023AA6001D
S123FB40367EF81AFE0000EE0220E5FE0000EE0018FE000218E600180818FF00023A32A79A
S123FB60007EF81AFE0000EE0220E53243367EF81AFE0000EE0218FE000218E60018081887
S123FB80FF00023A8600A700A701A702A703A704A705A7067EF81A18FE000218A600180874
S123FBA018FF0002367EF81A3236367EF81AFE0000EE0018FE000218E600180818FF0002F9
S123FBC03A3236A7007EF81AFE0000EE0018FE000218E60018083AA60018A000180818FF57
S10AFBE00002A7007EF81AE1
S9030000FC

56

58

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operation and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave Blank)

17. SECURITY CLASSIFICATION
OF REPORT

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18
298-102

14. SUBJECT TERMS

13. ABSTRACT (Maximum 200 words)

12a. DISTRIBUTION/AVAILABILITY STATEMENT

11. SUPPLEMENTARY NOTES

6. AUTHORS

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

12b. DISTRIBUTION CODE

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

20. LIMITATION OF ABSTRACT

16. PRICE CODE

15. NUMBER OF PAGES

2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

Inverting the Pendulum Using Fuzzy Control (Center Director’s
Discretionary Fund Final Report—Project 93–02)

R.R. Kissel and W.T. Sutherland

George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812

National Aeronautics and Space Administration
Washington, DC 20546–0001 NASA TM–108535

Prepared by Astrionics Laboratory, Science and Engineering Directorate

 A single pendulum was simulated in software and then built on a rotary base. A fuzzy
controller was used to show its advantages as a nonlinear controller since bringing the
pendulum inverted is extremely nonlinear. The controller was implemented in a Motorola
6811 microcontroller. A double pendulum was simulated and fuzzy control was used to
hold it in a vertical position. The double pendulum was not built into hardware for lack of
time. This project was for training and to show advantages of fuzzy control.

Unclassified–Unlimited

fuzzy control, inverted pendulum, nonlinear control, Lagrange
64

NTIS

Unclassified Unclassified Unclassified Unlimited

May 1997 Technical Memorandum

