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TECHNICAL MEMORANDUM

LOAD COMBINATION RESEARCH AT MARSHALL SPACE FLIGHT CENTER

1.  INTRODUCTION

The Marshall Space Flight Center (MSFC) loads combination research team was formed in 1983
under the direction of NASA Headquarters Office of Aeronautics and Space Technology (OAST). The
purpose of the team was to investigate the methods of combining low-frequency transient loads with
high-frequency random loads. Transient loads are produced by the Space Shuttle’s response to transient
events such as engine ignition, lift-off “twang,” and staging, while random loads are induced by engine
and aerodynamically generated noise impinging on the vehicle and payload structure, causing compo-
nents to vibrate. There is considerable variation within the aerospace industry in the derivation and
combination of these dynamic design loads. The loads combination team was charged with examining
these techniques and determining a more realistic and consistent method of deriving and combining
these loads. The team focused on four steps in the investigation:

1. Assess the applicability of Miles’ relationship to establish random vibration design loads.

2. Investigate the time-consistent combination of transient and random loads. Support the
findings with simple experiments.

3. Investigate phasing of the orthogonal axis loads versus worst-case single-axis loads.

4. Develop and implement a flight instrumentation package to support the loads combination
rationale.

When the loads combination team was disbanded in 1989, step 1 had been completed and
substantial progress had been made on step 2. The results of the Miles’ relationship investigation were
reported in reference 1 and presented at the Shuttle Payload Dynamic Environments and Loads
Prediction Workshop held at the Jet Propulsion Laboratory in January 1984. What follows was written
by the loads combination team (Jess Jones, Bob Walker, Robin Ferebee, and Ron Jewell from the MSFC
Structural Dynamics Division) and specifically concentrates on a load combination pioneered by Dick
Schock and Len Tuell and also reports on efforts to verify the different methods on Spacelab flight data.
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 2.  LOADS COMBINATION

Design of components and structures consists of combining loads from two types of excitation.
These are the low-frequency (0–50 Hz) and high-frequency (20–2,000 Hz) types of environmental loads.

Let z(t) = the combined loads

z t x t y t( ) ( ) ( )= +   , (1)

where:

x(t) = low-frequency loads (transient)

y(t) = high-frequency loads (random).

The problem becomes one of determining the statistics of z(t) in terms of x(t) and y(t). Generally,
the high-frequency load is in the form of random excitation with a Gaussian (normal) probability
distribution. For the low-frequency environment, it is generally in the form of a decaying sine wave. For
this analysis it is assumed that the combined loads can be described in this manner. For the sake of this
investigation, assume x(t) has the following form (shown in fig. 1).

Ψ( ) sin( )t A te t= −ζω ω   , (2)

where:

ζ = C/Cc  = damping/critical damping

ω = 2πf = natural frequency

T
M= − 





π
ζ ω2

ln( )
 where M = ratio of amplitude at time T to maximum amplitude

A0 = peak amplitude of decaying sine function; A
A

e

0

2 1 2

=

−











π ζ

ζ

  .

The time constant of eq. (2) is normally defined as 1/(ζω); eq. (2) is, in effect, the impulse
response or free decay response of a single degree-of-freedom system to unit impulse.
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Figure 1. Damped sinusoid waveform.

Schock2 presents a derivation of the probability density for a Gaussian noise signal combined
with a damped sine wave of the form specified by eq. (1). His formulation has not been generalized, as
his results are presented for ω = 1. Therefore, following Schock, the probability density of a function as
defined by eqs. (1) and (2) is

p z
T

e dt
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z Ae t
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R

t

( ) =
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− ( )( )−
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where σR is the standard deviation of the random process; i.e., of y(t), and T is taken to be the time
interval required for the sine amplitude to decay to some prescribed level. This time is normally taken

to be 4 or 5 time constants (TC = 1/(ζω)). In this analysis, T = ln( . )0 01 ω ζ  which allows the sine
amplitude to decay to 1 percent of its peak value.

The distribution function of z(t) is then

P z p z dz
k( ) = ( )
−∞∫   , (4)

where k is set to the prescribed level (z) to achieve a certain probability level, for example 99.9 percent
confidence.

In the case where damping is negligible, eq. (3) can be simplified to account for a sinusoid
combined with random noise
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Figure 2. Plot of probability density function for damped sine and random combination.

A plot of the probability distribution function (PDF) in eq. (1) for the case of σR
 
=1 and A=10

shows the shape of the function for relatively low σR/A (fig. 2). The shape of the function rapidly
approaches the familiar bell shape as σR/A approaches 1.

Table 1 shows some examples of load combinations using conventional techniques and the
method shown in the equations above. In the table, the 3σ  and 2σ  columns use eq. (4) with k chosen as

0.99865 and 0.975 respectively. The root sum square (RSS) Peaks column uses A2 23+ ( )σ , Sum

mean square (MS) is the sum of the MS values; 3 2
2 2A( ) +σ , and Straight Sum is simply A + 3σ . In

all cases ω=1 and ζ=0.1. The last column is 3σ  divided by the Straight Sum. The last row is a check on

the accuracy of the method, which is within 1 percent of the actual values.
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Table 1. Load combination for various ratios of random and damped sinusoids.

As can be seen in the last column (Straight Sum divided by 3σ), the method shown herein
reduces the magnitude of combined loads by varying amounts, depending on the Random/Sine ratio.
By far the majority of cases are similar to the third row, with a relatively high random load. In this case
the load is reduced by only 7 percent and is very close to the RSS method, which shows that the random
loads (when squared) tend to drive the combined cases. Therefore, methods that lower random loads
would be more beneficial than the small gains from load combination schemes (see the 2σ column).

Random
(σ) grms

Sine
(A) gpk
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Sine 3σ 2σ
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Sum
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%
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Table 2. Spacelab measurement locations.

3.  SPACELAB DATA

The Spacelab 1 vibration verification instrumentation consisted of high-frequency (5–2,000 Hz)
and low-frequency (0–50 Hz) accelerometers. These measurements recorded the response of the
Spacelab structure and represented the input to experiments and components rather than the response.
The measurement locations were reviewed and a set of 10 pairs of low- and high-frequency measure-
ments located very close to each other were selected for evaluation. Analog tapes of the measurements
were obtained and digitized over a 4-sec period beginning 0.2 sec before solid rocket booster ignition.
Filters were set at 40–2,000 Hz for the high-frequency measurements and 0–40 Hz for the low-frequency
measurements to ensure that one measurement did not affect the other. Table 2 shows the measurements
used.

Once consistent sets of time history data were obtained, they were combined in various ways and
statistics were calculated. Figure 3 shows a comparison of one measurement combination with a normal
distribution. The data fit the normal distribution pretty well, but the cumulative distribution around the
3σ value (99.865 percent) shows about a 0.1 g difference. Figure 4 shows how the data look when
combined.
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Figure 3. Comparison of Spacelab data with normal distribution.
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Figure 4. Typical Spacelab measurements.
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Table 3. Results of Spacelab data evaluation.

The present method of combining loads is to add the predicted loads directly together, so this
method (using the flight data) was used as a baseline for other methods. Table 3 shows the results of
combining the entire 4-sec data blocks and picking the maximum peaks during that period. Each column
is explained below. When dealing with random data it is customary to describe the amplitude statistically
in terms of the standard deviation over a stationary period. After time-consistently adding the two
measurements, statistics were calculated and shown in columns 7 and 8. Column 7 shows the maximum
time-consistent peak during the 4-sec period while column 8 shows the level that encompasses
99.865 percent of the data. Column 8 is the 99.865-percent probability level which is the 3σ (three times

Column
1 2 3 4 5 6 7 8 9 1110

LF
Meas.

HF
Meas.

LF
Peak

HF
Peak

HF
RMS

Sum
Peaks 100% 99.9% 3σ + A RSS PDF

8530

8504

8108

8109

8208

8210

8207

8512

8513

8514

8506

8504

8801

8802

8301

8303

8305

8507

8508

8509

1.87

2.08

2.94

2.79

0.85

2.93

2.07

1.93

0.71

1.98

3.32

4.33

1.19

1.27

0.67

0.92

2.54

0.86

0.96

1.03

0.827

1.145

0.814

0.353

0.221

0.225

0.346

0.236

0.270

0.288

5.19

6.41

4.13

4.06

1.52

3.86

4.61

2.80

1.67

3.01

3.15

4.03

3.25

2.87

1.20

3.25

2.99

2.20

1.24

2.20

2.61

3.37

2.24

2.71

0.94

2.91

2.41

1.97

0.93

2.00

4.35

5.51

5.38

3.85

1.51

3.61

3.11

2.64

1.52

2.85

3.10

4.01

3.82

2.98

1.08

3.01

2.31

2.06

1.08

2.16

3.15

4.04

3.91

2.93

1.15

2.84

2.32

2.02

1.23

2.14

DescriptionColumn

3

4

5

6

7

8

9

10

11

Highest peak of low-frequency measurement

Highest peak of high-frequency measurement

Maximum RMS of high-frequency measurement during 4-sec period

Sum of high- and low-frequency peaks regardless of timing (column 3 + column 4)

Maximum time-consistent peak of combined measurements

3σ level of combined data

3σ + A (column 3 + 3 times column 5)

√  A2 + (3σ)2

3σ level of combined data using Tuell and Schock method
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the root mean square (RMS)) level assuming that the data fit a Gaussian probability distribution. This
probability level is commonly used in calculating random loads. Column 11 shows the results of
applying the Tuell and Schock method2 of combining loads. Columns 2–8 are the results of measured
data while columns 9–11 are predictions based on the measured data.

The first general observation is the overall low magnitude of the numbers compared to the
preflight predictions. In almost all cases the preflight predictions were significantly higher than the
measured data. However, these data represent just one flight and subsequent flights could show higher
responses. Presumably the highest stresses occurred during maximum acceleration (shown in column 7)
and both the RSS method (column 10) and the PDF (column 11) are very close to the maximum
time-consistent acceleration. Therefore, either the RSS method or the PDF would give close estimates of
the maximum load if the peak low frequency and RMS high-frequency accelerations are known.

The difference between the most conservative combination method ( A + 3σ ) and the least (RSS)
is on the order of 30–40 percent. This may seem significant but the difference between the load
prediction and the measured response is much higher. This indicates that the combination may be less
important than the prediction method. Unfortunately these measurements are inputs to components and
the responses must be estimated using poorly defined parameters. Before the issues of load combination
and prediction can be properly addressed, a flight measurement system must be designed and
implemented to measure both low- and high-frequency payload responses.
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4.  PHASING OF HIGH-AND LOW-FREQUENCY LOADS

The relative phasing of the low- and high-frequency loads is of concern because generally the
two loads are combined, assuming that the maxima of both phenomena occur simultaneously. As can be
seen in figure 4, this is rarely the case. While the low-frequency transients occur at liftoff and quickly
damp out, the random vibration maximum occurs soon after liftoff, usually at about T+3 to 4 sec. In an
attempt to quantify the statistics of this relative phasing, the RMS time histories of the low- and high-
frequency measurements on Spacelab 1 were calculated and plotted together, as shown in figure 5 and
appendix A (figs. 6–14). Each measurement was normalized to its maximum value, so the magnitudes on
the plots are only relative to the individual measurements. The rest of the measurements are shown in
appendix B (figs. 15–23).

No general assumptions about phasing can be made from the limited data sample from
Spacelab 1. For example, the module core Z measurements show that at T+3.5 sec, 75 percent of the
transient is still present when the high-frequency measurement approaches its maximum value. Johnson
Space Center has proposed that design loads should be calculated by adding 50 percent of the random
load to 100 percent of the transient load. This would underestimate the design load for the module Z
case and all loads where the high-frequency load is much higher than the transient. A better method
would take the highest of (X%)A + 100%R and 100%A + (X%)R, where A and R are the transient and
random loads, respectively. X must be agreed upon by all parties and based upon concrete data.

Figure 5. Occurence of maximum levels of low- and high-frequency measurements.
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5.  CONCLUSIONS

The results of this study point out the need for additional research into load prediction
technology and correlation with actual flight results. The conclusions drawn from sections 2 and 3 are:

• The best combination method is RSS, which closely approximates the Tuell and Schock
 (most exact) method.

• Random load prediction technology has a great influence on the final limit load calculation.
• The relative phasing of the maximum low- and high-frequency loads is inconsistent and no

general conclusions can be drawn from the limited flight data.

The limited flight data examined points out the need for specialized instrumentation on future
flights to better correlate actual loads experienced by payload components during flight with the pre-
flight predictions. In particular, random load technology can be improved and large reductions in limit
loads achieved by time-consistently combining transient and random loads. Future research programs
can concentrate on these areas.
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APPENDIX A—Time History Plots of Spacelab Measurements
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Figure 6. Pallet hardpoint and component interface.
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Figure 8. Module core Y.

L05A8109

L05D8802

Combination

Time (sec)

g

5
4

3

2

1

0

–1

–2

–3

–4

–5
0 0.5 1 1.5 2 2.5 3 3.5 4

Time (sec)

g

5
4

3

2

1

0

–1

–2

–3

–4

–5
0 0.5 1 1.5 2 2.5 3 3.5 4

Time (sec)

g
5
4

3

2

1

0

–1

–2

–3

–4

–5
0 0.5 1 1.5 2 2.5 3 3.5 4



17

Figure 9. Rack and floor interface X.
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Figure 10. Rack and floor interface Z.

L05A8210

L05D8303

Combination

Time (sec)

g

5
4

3

2

1

0

–1

–2

–3

–4

–5
0 0.5 1 1.5 2 2.5 3 3.5 4

Time (sec)

g

5
4

3

2

1

0

–1

–2

–3

–4

–5
0 0.5 1 1.5 2 2.5 3 3.5 4

Time (sec)

g
5
4

3

2

1

0

–1

–2

–3

–4

–5
0 0.5 1 1.5 2 2.5 3 3.5 4



19

Figure 11. Rack and overhead attachment interface.
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Figure 12. Orthogrid and component interface X.
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Figure 13. Orthogrid and component interface Y.
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Figure 14. Orthogrid and component interface Z.
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Figure 15. Rack 4 bottom X direction.

Figure 16. Rack 4 bottom Z direction.
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Figure 17. Orthogrid top X direction.

Figure 18. Orthogrid top Y direction.
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Figure 19. Orthogrid top Z direction.

Figure 20. Rack top Y.
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Figure 21. Module core Y.

Figure 22. Pallet X.
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Figure 23. Pallet Z.
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