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TECHNICAL MEMORANDUM

TEST REPORT FOR NASA MSFC SUPPORT
OF THE LINEAR AEROSPIKE SR-71 EXPERIMENT (LASRE)

1. INTRODUCTION AND OBJECTIVES

In support of the Reusable Launch Vehicle (RLV) X-33 program, testing of the Linear Aerospike
SR-71 Experiment (LASRE) was conducted at NASA’s Dryden Flight Research Center (DFRC) and the
Air Force’s Phillips Laboratory during March 1996-November 1998. The objective of this program was
to operate a linear aerospike engine at various speeds and altitudes to determine how slipstreams affect
the performance of the engine.

Slipstream effects could degrade an aerospike engine’s performance as air flows over the
vehicle’s surface and interacts with the exhaust plume. Cold flow wind tunnel testing suggested such
effects might reduce engine performance by 6 percent. By mounting and testing the LASRE engine on
the back of an SR-71, performance data at various speeds and altitudes could be achieved to help under-
stand the actual magnitude of slipstream effects.

Rocketdyne Division of Boeing North American fabricated the LASRE engine and delivered it
to Lockheed Martin Skunkworks (LMSW). LMSW integrated the engine into a structural assembly that
was designed and fabricated to fit on the SR—71 aircraft. This structural assembly also housed the pro-
pellant feed systems, which were designed and fabricated by Lockheed Martin Astronautics (LMA).

The final test plan concentrated on operating the engine at chamber pressures around 200 psi
and mixture ratios of =6 for 3 sec. In flight, these conditions were planned to be performed at altitudes
ranging from 30,000 to 50,000 ft and Mach numbers ranging from 0.9 to 1.5.

DFRC requested that NASA’s Marshall Space Flight Center (MSFC) support this program by
providing technical expertise in liquid propulsion testing. This report presents details of the technical
support that MSFC provided throughout the test program.



2. LASRE ENGINE HARDWARE

The LASRE engine shown in figure 1 created the aerospike configuration with four individual
thrusters on each side. Its overall size was =10 percent of the engine actually being designed for the
RLV’s X-33 vehicle, which will use two aerospike engines with 10 thrusters per side. Each thruster was
supplied with liquid oxygen (LOX) and gaseous hydrogen (GH,) for propellants and deionized water for
coolant. On each side of the engine, the combustion gases exiting the thrusters expanded along the
curved, water-cooled ramps of the nozzle assembly. Water-cooled fences created the upper and lower
boundaries of the engine’s structure. These fences helped protect the uncooled surfaces surrounding the
engine assembly by retaining the exhaust gases.

LOX

Length (fence to fence): 27 in.
Width Between Thrusters: 30 in.

Engine Weight: 1,300 Ib
Engine Thrust: 7,000 Ib
Propellants: LOX/GH, (pressure fed)
Coolant: Deionized H,0

Ignition: TEA-TEB

No. of Thrusters: 8 (4 on each side)

Figure 1. LASRE engine hardware.



2.1 Thruster Assembly

Figures 2 and 3 depict different views of the thruster design. Each thruster assembly included an
injector and chamber designed for LOX/GH, combustion. LOX was supplied through the back of the
injector into the LOX manifold while GH, was supplied through the side into the fuel manifold. Each
chamber was cooled with deionized water. The hypergolic fluid triethylaluminum (TEA)-triethylboron
(TEB) (TEA-TEB) was provided for ignition. It was injected through a port in the side of each chamber
for ignition with LOX. An additional port in each chamber’s side wall was used to measure the internal
chamber pressure, P ., at the injector end.

Twenty-five circumferential coolant hole passages distributed the water along the chamber wall.
As shown in figure 2, the water entered each chamber in the bottom inlet manifold before being distrib-
uted to the coolant passages. (The inset in figure 2 illustrates the direction of the water flow in each
passage.) The diameter of each coolant hole passage was 3/32 in., while each manifold was 1-in. in
diameter. Common manifolding of the passages prevented local, individual coolant temperature and
pressure measurements. Inlet and exit lines were brazed to the chamber to supply the water coolant.

Figure 2 also shows the overall dimensions of the thruster assembly. The rectangular cross
section of the chamber measured 1.5 in. X 5 in. at the injector end, narrowing to 0.357 in. X 5 in. at the
throat.

The chamber was fabricated with NARIoy-Z (a copper alloy). To provide some additional ther-
mal protection, the hot wall of each chamber was coated with zirconium oxide (ZrO,) in gradiated layers
with NiCrAlY (an alloy of nickel, chromium, aluminum and yttrium). The three-layer coating included
equal layers of NiCrAlY along the NARloy-Z surface, followed by 50-percent NiCrAlY/50-percent
Zr0,, and finally ZrO,, providing a total coating thickness of =0.009 in. The ZrO, provided the thermal
barrier, while the undercoatings provided compliant layers with the NARIloy-Z surface. All coatings
were applied in atmosphere. (Though Rocketdyne’s original analysis suggested plenty of cooling margin
without a thermal coating, it was applied anyway for additional margin.)

Figure 3 shows a profile of the injector, which was brazed to each chamber to complete the
thruster assembly. The faceplate design included 48 coaxial elements. Each element provided LOX
through the center post (inner diameter =0.06 in.) and fuel through the surrounding annulus (fuel gap
~(0.014 in.). Boundary layer coolant (BLC) holes surrounded the perimeter of the faceplate to direct fuel
film coolant on the chamber hot wall to help reduce local heating rates. Each of the 68 BL.C holes
measured =0.030 in. in diameter.

The entire injector assembly was fabricated with stainless steel (CRES 304L) materials, except
for the faceplate which was made with oxygen-free high conductivity (OFHC) copper. The fabrication
process included several braze operations. Each LOX post was brazed into the injector body and result-
ing joints were visually inspected. Separate braze operations were used to attach the injector faceplate
and manifold closeout structures. Joints were ultrasonically inspected, followed by proof and leak tests
before hardware delivery.
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2.2 Single Thruster Testing

Rocketdyne fabricated nine thruster assemblies, and eight were used for the LASRE engine. The
additional thruster was tested at Rocketdyne’s Santa Susanna Field Laboratory (SSFL) to verify the
design and recommended operating sequence. Each thruster was designed to operate at chamber pres-
sures ranging from 200-300 psia, as originally required by the LASRE program. Objectives of the single
thruster testing included operating the thruster within this range at various mixture ratio levels. In addi-
tion, a total accumulated duration of 180 sec was planned to provide exposure for 1.5 times the total
duration originally planned for the LASRE engine (120 sec).

Results at SSFL compiled a total of 112 sec on the thruster within the desired operating condi-
tions. Unfortunately, a failure occurred on the hot wall of the chamber liner during the 12th mainstage
test, ending the program before the desired total duration was achieved. The failure was primarily caused
by impurities in the facility water used to cool the thruster. A similar failure was not expected for the
LASRE engine because deionized water would be used to cool the entire assembly.

However, the failure investigation provided an additional, more thorough review of the thruster
design. Additional analytical results showed the thermal margin for cooling the chamber was much
lower than results implied by the original analyses. Acceptable margin was only available for operating
the thruster design at a chamber pressure around 200 psia, unless a higher coolant flow rate could be
provided for the LASRE system. Water blowdowns of the LASRE engine eventually showed that addi-
tional coolant was not available. So, to be conservative, the test conditions for LASRE were changed to
concentrate on testing only at chamber pressures of 200 psia (at least until additional confidence in the
hardware could be achieved with successful hot-fire testing in flight).

Appendix A provides further details of this single thruster test program and the failure
investigation.



2.3 Nozzle Assembly

The nozzle assembly shown in figure 1 directed the combustion gases exiting the thrusters,
allowing them to expand along the curved ramps positioned downstream. This nozzle assembly was also
cooled with deionized water. Its inlet manifolds received the coolant exiting the thrusters and directed it
to coolant passages within the ramps. Outlet manifolds collected the coolant exiting the ramps and
further distributed it to the fences attached to the upper and lower portions of the nozzle assembly. Water
from the fences was directed to a single coolant line exiting the engine. The ramps and fences were
fabricated from copper with ZrO, coatings applied to their surfaces for thermal protection. The engine
frame and all plumbing in the assembly were fabricated with stainless steel (CRES 321).

Appendix B provides additional details on the design limitations of the engine hardware.



3. PROPELLANT/COOLANT SUPPLY SYSTEMS

Figure 4 illustrates the complete LASRE flight test hardware assembly, known as the pod. This
assembly consisted of several structures identified as the canoe, kayak, reflection plane, and model.

The hydrogen and water systems, along with their associated helium tanks, were housed in the
canoe, which was mounted directly to the SR—71 upper fuselage. The canoe also contained the controller
used to signal all the systems during operation. The LOX and TEA-TEB systems and their helium tanks
were contained within the model. The actual engine assembly was mounted into the aft end of the
model, which was connected to a force balance for measuring forces in flight. The contour of the model
represented a half-span lifting body shape, similar to the X—33 vehicle design. The kayak positioned
above the canoe created the incidence angle of the model, and a flat plate mounted atop the kayak
provided a reflection plane downstream of the engine assembly. The contained areas of the pod were
purged with nitrogen to help safeguard the enclosures if excessive internal or external leaks resulted.

Figure 5 shows simplified schematics of the propellant and coolant supply systems. Appendix C
provides additional information on these systems.

Model Balance | gy vent
\ ® Engine
Canoe Kayak Reflection
LOX
\\\§~\ \\\\___,~ ® ){Pﬁne

H,0 Exit
@9 @9 @9 ( Engine CoolingH,0 Y GH, ) GH, )(__ GH, )[Controller] GH:Dur:p$

Pod Cooling Hy0
SR-7
Purge LN,

Figure 4. LASRE pod assembly.
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3.1 LOX Supply System

LOX was supplied from a single tank positioned upstream of two supply valves. The trickle valve
allowed a small, initial flow rate of LOX to properly chill the lines and hardware at the start of the test.
The main valve provided flow during the ignition and mainstage phases. Gaseous helium (GHe) was
provided to pressurize the tank and properly purge the LOX system.

Three cavitating venturies were used to control the LOX flow rate to the engine. Their size and
position allowed the engine to be throttled, if desired. Original test plans included thrust vectored burns
where one side of the engine would be operated at 120 percent of the nominal chamber pressure and the
other side would be operated at 80 percent. The venturies were sized to provide 100, 80, and 20 percent
of the nominal flow rate.

Two manual valves were positioned downstream of the 20-percent venturi, allowing flow to
either bank of thrusters to create the desired throttled flow rate. For all the tests actually performed in
this program, the manual valve to thrusters 1-4 was closed and the manual valve to thrusters 5—8
remained open. Thrusters 1-4 received the flow provided by the 100-percent venturi, and thrusters 5—8
received the combined flow provided by the 80- and 20-percent venturies.

3.2 Fuel Supply System

GH, was supplied for fuel from five tanks. A regulating valve was used to control the fuel supply
based on the pressure required at the venturi inlets. Three sonic venturies and two manual control valves
were arranged similar to the LOX system to provide appropriately throttled flow rates to each side of the
engine. GHe provided the necessary system purge.

The manual valves downstream of the 20-percent venturi were operated in the same configura-
tion as the LOX system. The manual valve to thrusters 1-4 remained closed, while the valve to thrusters
5-8 was opened. Therefore, flow from only the 100-percent venturi was directed to thrusters 1-4, and
the combined flow from the 20- and 80-percent venturies was directed to thrusters 5—8.

3.3 TEA-TEB Supply System

Two canisters of the hypergol TEA-TEB were available, since original test plans included two
burns per test. Each canister was isolated from the GHe pressurant by a control valve. With the control
valve opened, the pressure supplied to the respective canister ruptured the internal burst disk, allowing
TEA-TEB to flow to each thruster for ignition with LOX. The continuous GHe flow provided a purge of
this system after expelling the TEA-TEB. Additional valves allowed this system to be purged even when
the canister supply valves remained closed. In addition, a constant trickle purge was kept on the TEA-
TEB system at all times to ensure the cleanliness of the lines and prevent the small TEA-TEB ports in
each thruster from getting blocked.



3.4 Water Coolant Supply System

Deionized water was supplied from two tanks, pressurized with GHe. A small supply valve
initiated water flow to the hardware with a reduced flow rate to prime the system and prevent water
hammer effects. The main supply valve provided the full coolant flow rate to the hardware during igni-
tion and mainstage phases of the test. Figure 5(b) shows the coolant was provided to each individual
thruster to properly cool the walls of the chamber. The exit flow from each thruster was collected in the
inlet manifolds of the nozzle assembly where it was directed to cool each ramp. Flow exiting the ramps
was also used to cool the fences surrounding the assembly, and finally all coolant flow was collected and
exhausted out a common exit line from the engine.

(In initial ground testing, an orifice and a flow meter were positioned in the exit line (down-
stream of the exit line pressure transducer) to help characterize the flow rate available for cooling the
engine. To provide as much coolant flow as possible, the orifice was eventually removed to limit the
resistance in the water system. The flow meter remained for additional tests, but it was eventually
removed as well.)
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4. INSTRUMENTATION

Pressure transducers and thermocouples were placed throughout the supply systems and engine
to provide appropriate data. Figure 5 illustrates the location of specific pressure (P) and temperature (7)
measurements. Redlined parameters are highlighted with an “*.” Appendix D provides the complete
engine and supply systems instrumentation list for this program.

Each thruster included a port for measuring chamber pressure results at the injector end. In
addition, pressures were measured in each thruster’s LOX and fuel manifolds. Thermocouples could not
be supplied for each manifold, but temperatures were measured in as many locations as possible in each
bank of thrusters. Thrusters 1-4 were called the “high” thrust side of the engine, since they were capable
of providing the highest chamber pressure condition with 120-percent of the propellant flow available.
This side of the engine was instrumented with a thermocouple in each LOX manifold and the fuel
manifold of thruster No. 1. The “low” thrust side of the engine with thrusters 5-8 included LOX mani-
fold temperature measurements in thrusters Nos. 6 and 8, while a fuel manifold temperature was mea-
sured only in thruster No. 5. It was important to include at least one fuel manifold temperature measure-
ment on each side of the engine to help detect any backflow of propellants during engine operation and
to help investigate any anomalies.

A pressure and temperature measurement were located upstream of each venturi to provide data

for calculating propellant flow rates. In addition, to help verify cavitation in the 20- and 80-percent
venturies in the LOX system, throat pressure measurements were available.
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5. OPERATING SEQUENCE

While appendix E provides a more detailed sequence, figure 6 provides a simplified sequence to
describe the ignition, mainstage, and shutdown operations. Various sequence changes were made during
the course of this program, but only the final sequence used for the successful ground hot-fires is pro-
vided in this report. A single control panel with limited switches was used to signal the integrated con-
troller and perform each test. After completing the ground configuration tests at Phillips Laboratory, this
control panel was installed in the aft cockpit of the aircraft.

The LOX and TEA-TEB systems were initially purged with GHe. The trickle flow of LOX was
provided for 8 sec to properly chill the lines and hardware. Results provided a cold system that pre-
vented the main flow of LOX from vaporizing, so good quality LOX was available for ignition and
mainstage operation. Just before initiating the main flow of LOX, the trickle flow of water was started to
properly prime the system, followed by the main flow of water to properly cool the thrusters before
combustion. Soon after the main flow of LOX was provided, the TEA-TEB was supplied to provide
ignition in each thruster. During this ignition phase, a purge was provided to the fuel side of each injec-
tor. The chamber pressure in each thruster was checked and if each showed at least 15 psig, ignition was
confirmed and the fuel flow was initiated.

Supply Systems

Water Trickle

Water Main

LOX

TEA-TEB*

GH,

Ignition Detect

Min P,=15 psig

TEA-TEB trickle purge provided continuously - Fluid Flow

Purges

Figure 6. Simplified LASRE sequence.
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Fuel was provided for only 3 sec before cutoff occurred. LOX and fuel supply valves were both
closed at cutoff, and purges were supplied to each system. The GHe used to pressurize the TEA-TEB
canister provided a continuous, proper purge after the hypergol was completely expelled. After cutoff,
the water flow continued as the purges pushed residual propellants out the engine. When the LOX and
TEA-TEB purges were completed, the TEA-TEB system was provided with three “puff” purges to help
clear out any accumulated TEA-TEB residue. (Note: Although it is not shown, a continuous, low-level
purge was also provided through the TEA-TEB system to further ensure cleanliness.)

While this sequence was similar to component testing operations at MSFC, there were some
slight differences due to the limitations of the LASRE engine system. Specifically, this system was not
capable of providing a positive purge on the fuel side of the injector during the ignition phase. However,
even though ignition products were allowed to flow into the fuel side of the system, the fuel flow was
preceded by GHe flow that appeared to properly clear the fuel manifolds of the ignition products before
hydrogen reached this area of the hardware. Therefore, all mainstage combustion appeared to occur only
in the combustion chamber, as desired. Fuel manifold pressures and temperatures did not indicate any
sustained internal burning in this area of the injectors, so the sequence appeared to be sufficient for the
operation of this system. (A higher purge to provide positive pressure on the fuel side was not possible
due to the limited amount of GHe available for the LASRE system.) Also, the shutdown sequence did
not ensure a fuel-rich shutdown to protect the walls of the chambers from exposure to LOX after a hot-
fire. However, Rocketdyne’s testing on the single thruster used a LOX-rich shutdown and demonstrated
the hardware’s integrity to such exposure. Hardware inspections on each chamber did not reveal any hot
spots or liner degradation that could be attributed to a LOX-rich environment.

Appropriate redlines were active during this sequence to ensure the test was properly terminated

if anomalies occurred. Table 1 further describes the parameters used for redline values in the supply
systems and the engine.

Table 1. Redlined parameters used for cutoff.

Redline Parameter

Reason for Cutoff

Maximum water tank pressure

Prevent overpressurizing the water tanks

Maximum water inlet pressure

Could indicate frozen coolant or engine obstruction;
redundant indication of overpressured water tanks

Minimum water inlet pressure

Insufficient coolant flow to the engine

Maximum water exit pressure

Significant change in engine/line resistance

Minimum water exit pressure

Pressure loss in engine due to failure or frozen coolant

Maximum water ramp temperature

Engine overheating

Maximum LOX venturi inlet pressure

Prevent high P, and/or high engine mixture ratio

Maximum GH, venturi inlet pressure

Prevent high P,

Minimum GH, venturi inlet pressure

Prevent low P, and/or high engine mixture ratio

Minimum P,

Avoid unstable operating region; indicates engine
failure/loss of pressure in engine; no ignition

Maximum P,

Prevent overpressurizing/overheating engine
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The autosafe sequences after shutdown were used to remove residual fluids from the systems
after the completed tests. The fuel system was “autosafed” first to remove the fuel while the LOX system
was isolated. Water was also expelled prior to the LOX autosafe sequence. Original sequences did not
include an autosafe of the water system. However, when the stagnant water in the engine began to freeze
when exposed to the cold temperatures of the LOX autosafe procedure, the water autosafe sequence was
added to remove this water before expelling LOX. Finally, the LOX autosafe was performed to remove
any oxidizer remaining in the system. These sequences were part of the procedures performed before
landing the aircraft to minimize the propellants on board.
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6. TEST SUMMARY

Ground configuration testing at Phillips Laboratory was performed from March 1996 to April
1997. Tests in this series included GRUNO019-37. Flight configuration testing was performed at DFRC
from September 1997 to October 1998. This test series included additional ground tests, GRUN0038-63,
as well as flight tests, FLT0047-51.

Trends in the test results were evaluated by reviewing transient and steady-state data of each
system. The resulting values and trends were compared between each test to check for appropriate and
consistent responses. Transient data represented the actual response of a specific parameter over a period
of time. Steady-state data were evaluated at a specific time slice during the test. This time slice was
usually taken near the end of the main flow of propellants, after all instrumentation responses had
enough time to stabilize. Unless specific operating sequence or hardware changes were made, transient
and steady-state results were expected to remain consistent between tests. Inconsistent data were evalu-
ated further to immediately identify possible anomalies in the hardware or operating system. Resulting
values were also compared to the redline values to make sure cutoff limits were appropriately set.

Appendix F provides a summary of most of the steady-state data obtained throughout this test
program. Some of the transient data can be found in appendices G-L.

6.1 Ground Configuration Testing

To verify the performance and operation of the propellant system and the engine, numerous
blowdowns and cold flows were performed at Phillips Laboratory prior to hot-fire testing. This ground
testing was performed so the entire LASRE system could be checked out properly before installing it on
the SR-71.

Original test plans included two burns per test, so some of these checkout tests included single
and double blows to properly evaluate the capabilities of the systems. Eventually, system limitations
identified in the cold flows changed the test plans to include only single blows.

After the systems were thoroughly checked with the cold flows, ignition tests were performed,
followed by two successful hot-fire tests. Appendix F includes the steady-state data for these ground
tests.

6.1.1 Water System Tests

Blowdowns of the water system were performed to identify the flow resistances and determine
the maximum flow rate available for cooling the engine hardware. The hardware was originally designed
to operate with plenty of thermal margin if at least 40 1b, /sec were supplied to the engine. However,
thermal analyses performed after the single thruster failure at SSFL recommended a higher coolant flow
rate be provided to ensure adequate thermal margins when testing at chamber pressures much higher
than 200 psia (see app. A).
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Initial water system blowdowns attempted to attain higher flow rates by operating the water tanks
at their maximum allowable pressures. Unfortunately, the flow resistances throughout the coolant system
were much higher than predicted. Even an orifice, originally included in the exit line downstream of the
engine to regulate the flow rate, was eventually removed to eliminate as much resistance as possible. A
flow meter was available in the exit line to measure resulting flow rates without the orifice in place.
(This flow meter was eventually removed, and when it was no longer available, coolant flow rates were
determined by scaling the pressure drops observed in each test.)

Even when using the maximum water supply pressure, only 40 Ib, /sec was available for cooling
the thrusters. Based on these results, the test conditions of 250 and 300 psia included in the original test
plans were eliminated, and subsequent blowdowns and cold-flow testing concentrated on preparing for
hot-fire conditions at 200 psia.

Final configuration of the water system provided water inlet pressures to the engine around
600 psia. With 40 1b, /sec provided for the total coolant flow rate, a pressure drop of =400 psi resulted
through the engine, creating a water exit pressure of =200 psia. Since the system results were expected
to remain constant unless anomalies were experienced, the redlines were set relative to this data. The
redlined values set to identify anomalies in the water system and initiate cutoff are provided in table 2.

During the colder months at Phillips Laboratory, ambient temperatures were cool enough to
allow freezing in the water system. The freezing was first apparent during the LOX autosafe sequence
when stagnant, residual water in the engine froze due to the resulting cold hardware temperatures. The
water autosafe sequence was added to remove residual water from the assembly prior to conducting the
LOX autosafe. (Since the water was removed with GHe pressurant, the flow meter originally in the exit
line was removed so its blades would not be damaged from overspinning when exposed to the high GHe
flow that followed the water.)

However, additional freezing continued to be observed at the start of each test. In addition to
further changes in the water autosafe sequence, modifications were also made to the start sequence. It
appeared that in the original sequence, the LOX trickle flow was enough to freeze residual water (when
not successfully removed by the water autosafe sequence) and/or the water trickle flow. So, the sequence
was revised to delay the start of the water trickle flow to limit the amount of exposure to the cold system
temperatures prior to starting the main water flow before the ignition and mainstage phases. Eventually,
the test plans changed to perform only single blows, which helped reduce concerns about freezing
residual water between blows.

While appendix F includes steady-state data for the water system, appendix G provides further
details and analysis of the water system test results.

Table 2. Redlined values used for water system.

Redline Value
(psia)
Maximum water tank pressure 870
Maximum water inlet pressure (to engine) 660
Minimum water inlet pressure (to engine) 500
Maximum water exit pressure 600
Minimum water exit pressure 135
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6.1.2 LOX System Tests

Initially, the LOX system was evaluated with liquid nitrogen (LN,). However, some of the engine
thermocouple readings were suspicious, making it hard to evaluate the exact quality of LOX that would
result in the system based on the temperature results. To properly verify the LOX system performance,
remaining LOX blowdowns and cold flows were performed with LOX. (Eventually the thermocouples
were calibrated to provide accurate and repeatable temperature measurements.)

Early tests experienced some leaks in the LOX system that were eliminated with minor hardware
changes (including replacing the LOX prechill valve). Yet, for the most part, the LOX system provided
consistent and appropriate operation for the cold flows conducted prior to the ignition tests. The cold
flows showed the venturies cavitated properly and provided the desired flow rates. In addition, good
quality LOX was available consistently for each test. (Only one test (GR’32) provided poor quality LOX
when a full tank was unavailable. In this test, the GHe pressurant mixed with the residual LOX in the
tank to create warm fluid temperatures.)

The final LOX system operation settings included regulating the LOX tank between 365 and
375 psia. This pressure range provided appropriate LOX venturi inlet pressures, =350 psia, for the
required LOX flow rate to the engine. To detect anomalous behavior in the LOX system and initiate
cutoff during the main flow, a redline value of 430 psia was set for the 20-percent (LOX) venturi inlet
pressure. (Prior to main flow, this value was set higher (900 psia) to avoid any pressure spikes due to
two-phase flow during initialization. Such spikes had been observed in early tests, particularly when
LN, was used in the system.)

Appendix H provides additional data and details of the LOX system test results.
6.1.3 Fuel System Tests

All fuel cold flows and blowdowns were performed with GHe to minimize risks to the LASRE
system. GHe provided an appropriate medium for these system checkouts, since the data were easily
scaled to ensure required conditions would result when GH, was used. The fuel supply valve was
regulated to provide a specific pressure at the venturi inlets, depending on the required flow rate.

In an early cold flow (GRUNOO016), the poppet in the fuel valve actually broke off due to high
cycle fatigue. With no containment feature downstream of the valve, the poppet flowed into the engine
assembly where it became lodged in the manifolding. (The engine was removed from the model and
physically rotated to retrieve the poppet. No internal damage to the engine system was observed.) The
valve was redesigned to prevent such a failure from occurring again. Additional tests experienced leaks
and irregular behavior from this valve. After the valve design was further reworked, the regulating
system worked consistently with GHe to provide the required pressure for subsequent cold flows.

Nominal conditions provided =470 psia at each fuel venturi for the required flow rate. Redlines
were used at the 20-percent (fuel) venturi inlet to detect any anomalies for cutoff. The maximum venturi

pressure was limited to 700 psia during main flow, with a minimum value limited to 420 psia.

Appendix I provides additional data and details of the fuel system test results.
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6.1.4 Ignition Tests

While preceding cold flows ensured the nominal and consistent operation of the water, LOX, and
fuel system, four ignition tests were performed to check out the TEA-TEB system and optimize the
ignition sequence. LOX was used to provide ignition with the resulting TEA-TEB flow, and GHe was
still used in the fuel system. Water was provided in each test to appropriately cool the engine.

The performance of the TEA-TEB system was verified for both single (GR’31 and GR’32) and
double burns (GR’33), since two canisters of TEA-TEB were available to operate independently. Both
cartridges were successfully used, and the TEA-TEB ports in each thruster remained unclogged after
each test. This was important, since small TEA-TEB ports can easily clog if not purged properly. While
other component hardware allows easy access to remove such ports and clean them between tests, the
contained design of the LASRE engine would not allow such access. Fortunately, the successful purges
relieved this concern.

In addition, consistent and immediate ignition was achieved in all eight thrusters during each test.
The ignition sequence timing was verified and results allowed the ignition detect value to be set. Each
thruster provided a chamber pressure of =30 psig during ignition, so 15 psig was used for the minimum
pressure required to ensure ignition. This pressure was sufficiently above the average chamber pressure
(=5 psig) provided prior to ignition, when only LOX and corresponding purges were present.

The resulting TEA-TEB flow from each cartridge provided =0.04 Ib_/sec to each thruster for less
than 0.5 sec. The test sequence was reviewed to make sure fuel flow was initiated before all TEA-TEB
was consumed (otherwise, the ignition source required for mainstage combustion would be eliminated).
Although tests were run with both cartridges to verify the design of the system, only one cartridge was
really necessary, since changes to the test plans eventually eliminated the required double burns.

Fuel manifold pressures began to increase slightly after the ignition tests were performed. These
higher pressures were likely due to TEA-TEB residue in the fuel annuli and/or the BLC holes of the
injectors. Such residue was not unexpected or unusual, especially without a positive purge on the fuel
side of the injector during the ignition phase. However, even with this residue, analysis showed there
was still plenty of fuel side flow area available in each injector. So, the results posed no threat to the
hardware condition or the performance of each thruster. The pressures were monitored in subsequent
tests to verify that adequate fuel side flow areas always remained available.

Appendix J provides additional data and details of the ignition test results.

6.1.5 Hot-Fire Tests

After all systems were verified to ensure nominal and consistent operation, a hot-fire test was
attempted. The initial attempt caused the main fuel valve to fail when exposed to hydrogen for the first
time during pretest servicing. The failure resulted when the bellows in the valve cracked due to hydrogen
embrittlement. No hot-fire test was attempted, and the valve was removed for servicing. It was rede-
signed to use a compatible piston assembly instead of a bellows. After the redesigned valve was
installed, two successful hot-fires were performed. Figure 7 shows one of these ground hot-fire tests.
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Figure 7. Ground configuration hot-fire test.
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The hot-fires provided the first opportunity to verify the performance of the fuel system with
hydrogen. Data were successfully scaled based on the GHe performance, so proper pressures and flow
rates resulted with GH,. In addition, the entire test sequence was finally verified—fuel was properly
provided to the engine prior to depleting the ignition source, allowing successful transition to mainstage,
and all redline values appeared to be set appropriately.

Both tests were operated at mainstage chamber pressures of =220 psia in each thruster for 3 sec.
Each provided confidence in the consistent operation of the entire system prior to performing hot-fires in
flight. Inspections revealed that some thermal coating had spalled off each thruster’s liner. However, this
was not unexpected since the type of coatings applied have a history of such problems. Yet, no excessive
hot spots were observed to indicate overheating, so each thruster remained in good condition after each
hot-fire.

The data were used to calculate the performance of each thruster, and results were compared to
those achieved for the single thruster at SSFL. The characteristic velocity, C*, was used for the perfor-
mance parameter on this component hardware. Its value was determined for the test conditions in each
thruster and compared to the theoretical values to provide C* efficiency results. The thrusters were not
designed to provide high performance. So, absolute values were not as important as consistency between
each thruster from test to test. (A degradation in performance between hot-fires can often indicate
degradations within the hardware.)

Figure 8 compares the results for both hot-fires with those from SSFL. Since the single thruster
testing was conducted over a range of conditions, the performance results provided C* efficiencies from
83 to 95 percent. For each thruster in the LASRE engine, resulting C* efficiencies ranged from 91 to
98 percent. Actually, when tested at similar conditions (P, =200 psia, mixture ratio =6), the single
thruster produced a C* efficiency of =85 percent. Each thruster in the LASRE engine provided higher
than expected performance results that remained consistent between hot-fires.
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Figure 8. Thruster performance results in each hot-fire test.
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Table 3 further compares the resulting hot-fire conditions with expected values. Required flow
rates for the LASRE engine were determined by assuming a C* efficiency of 85 percent, as observed for
the single thruster in the SSFL testing. Since the performance of each LASRE engine thruster was
actually higher than expected (probably fewer losses compared to the single thruster), the resulting
chamber pressures for the two hot-fire tests were slightly higher than expected.

Table 3. Hot-fire results versus expected conditions.

Average Average C*
Condition Average P, (psia) Mixture Ratio Efficiency
Expected ~200 ~6.0 ~85%**
GRUNO0O36 results 220 5.6 93%
GRUNO0O37 results 220 5.6 95%

**Based on SSFL testing at P, ~200 psia

Finally, the thermal performance of the engine was checked. Figure 8 shows the ramp tempera-
tures responded appropriately with the rising chamber pressure, and final values remained well below
the redlines set for cutoff. Furthermore, the responses remained consistent between tests, with the tem-
perature rise only slightly higher in the second hot-fire.

Note in figure 9 that chamber pressures continued to rise slightly during mainstage instead of
reaching a constant level. This occurred because of the increasing fuel flow rate supplied by the GH,
system. A constant pressure was not maintained on the fuel tank, so after the main fuel valve opened, the
tank pressure decreased as fuel flowed to the engine. As the tank pressure decreased, the temperature of
the fuel decreased. Although the venturi inlet pressures were maintained at constant levels by regulating
the fuel valve position, the decreasing temperatures increased the density of the fuel. Results created a
corresponding increase in the fuel flow rate, which produced the rising chamber pressure levels.

Appendix K provides additional details on the hot-fire data results and supporting analyses.
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Figure 9. Ramp temperature responses in each hot-fire test.

6.2 Flight Configuration Testing

When ground testing was completed at Phillips Laboratory, the LASRE system was moved to
DFRC’s facilities to prepare the system for its flight configuration. To prepare the assembly for flight, all
panels around the pod were installed to properly seal the assembly. After the assembly was attached to
the SR—71, additional cold flows were performed to verify no changes had occurred that affected the
performance established for each system. Several cold flows were conducted with the aircraft on the
ground before proceeding with additional cold flows in flight. Figure 10 shows the pod being mounted
to the aircraft for flight configuration testing.

While appendix F includes the steady-state data, appendix L provides transient data plots that
compare flight configuration results with ground configuration tests.
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Figure 10. LASRE pod being mounted to SR-71.
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6.2.1 Initial Ground Testing

Before tests in flight were attempted, four ground-level cold flows were conducted with the
system in flight configuration. These were performed with LN, through the LOX system to alleviate
concerns of LOX spilling on to the surface of the stationary aircraft. GHe was used in the fuel and TEA-
TEB systems.

The LOX system continued to perform nominally with results consistent with those obtained
during ground tests at Phillips Laboratory. Similarly, the fuel, TEA-TEB, water, and engine systems all
continued to perform consistently when compared with results achieved at Phillips Laboratory.

Some difficulty was experienced with the system used to pressurize the LOX tank, but when
properly pressurized, the supply system to the engine provided the pressures and flow rates required for
the hot-fire conditions. It was suspected that the pressurizing problems were caused by a valve in the
LOX vent line. Isolation tests suggested the valve was inadvertently opening and/or leaking and allowing
pressure to escape the LOX system. Consequently, the tank could not achieve constant pressure, as
desired. Further investigations attributed the problem to changes made in the pressurization sequence.
While the original operating sequence used two valves to pressurize the LOX tank, a modification during
flight configuration testing employed only one valve for this operation. The change apparently affected
the LOX system dynamics enough to influence the behavior of the LOX vent valve. When the operating
sequence was eventually modified to use both pressurizing valves again, the system problems were
alleviated.

In addition, in GR’41, the “Emergency Shutoff Switch” was used to verify that implementing
this procedure in the event of anomaly would provide a “safe” shutdown of the systems and hardware.
An additional inadvertent shutdown would occur if power was lost to the system “controller.” A shut-
down to demonstrate this event was performed in GR’46, and results verified that the main LOX and
fuel valves closed properly and isolated the engine, as designed.

6.2.2 Initial Flight Testing

Initial ground testing of the flight configuration established further confidence in all system
operations. Cold flows were then conducted in flight to verify that nominal operation continued when
systems were operated at speed and altitude. The resulting cold flow data compared very well with the
ground cold flow data, and no major sequence changes for the engine were required.

The first two flight cold flows, FLT’47 and ‘48, used LN, in the LOX system (with GHe in the
fuel and TEA-TEB systems). The cold flow in FLT 47 was conducted at 41,000 ft and a Mach number
of 1.2; FLT 48 was conducted at 31,000 ft and a Mach number of 0.9. For these flights, all engine and
supply systems performed nominally—results were consistent with ground test data. Figure 11 shows
the water coolant being exhausted at the end of one of the initial flight tests.

Unfortunately, the LASRE pod structural assembly did not appear leak tight, as desired. A
nitrogen purge of the pod was used. This purge was designed to keep air out of the contained assembly
and minimize the presence of oxygen in the event of a fuel leak. Yet, the pod filled with air shortly after
takeoff according to oxygen sensors positioned in the canoe assembly. Between tests, attempts were
made to seal the assembly better. Results in the second test, FLT 48, showed some improvement, but
more sealing was required to provide acceptable levels before a hot-fire could be attempted.
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Figure 11. Water exhausted during first flight configuration test.
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The third flight, FLT’49, was planned to conduct a cold flow along with an ignition test; so, LOX
was provided along with a single load of TEA-TEB. GHe was used in the fuel system. The test was
attempted at an altitude of 26,000 ft and a Mach number of 0.75. Unfortunately, no ignition was obtained
because the TEA-TEB had been loaded in the wrong canister. (After this incident, the second canister
was appropriately sealed, so this mistake could not happen again.)

However, the sequence still allowed a successful cold flow to be performed, so results were
established using LOX in flight. All engine and system parameters performed nominally with results
comparable to the first two flight cold flows.

The level of air leaks in the canoe were significantly reduced in FLT’49, so this structure
appeared to be sealed much better. Unfortunately, oxygen sensors in the model indicated LOX leaks at
unacceptable levels. Although these sensors were available in the model assembly during the other
flights, LN, had been used in the system. The leaks were not detected until LOX was provided in this
flight.

Except for the excessive leaks reported in the pod during the flight cold flows, the engine and
propellant systems were operating nominally and consistently. In fact, the flight readiness review (FRR)
was conducted at DFRC on May 7, 1998, to review the LASRE program and request that a hot-fire in
flight be considered. However, the presence of the leaks created too much uncertainty, and additional
tests were planned to address these leaks before a hot-fire in flight would be attempted.

6.2.3 Additional Tests for Leakage

Unfortunately, the design of the system allowed limited access to the internal structures, making
it difficult to perform thorough leak checks. Evaluations of the propellant lines and the engine had to
rely on the few sensors available within the pod for relative data and limited visual checks for actually
locating possible leak paths.

To further investigate the integrity of the fuel system and check for hydrogen leaks, a ground test
(GR’52) was conducted with a mixture of =3-percent GH, and 97-percent GHe through the fuel system.
Hydrogen detectors were placed in various locations throughout the model to check for the presence
of hydrogen when the fuel system was operated. The test was performed without the nitrogen purge,
so hydrogen could be detected in an “unpurged” environment. The fuel system appeared leak tight, since
no hydrogen was detected throughout the test.

Following FLT’49 when LOX leaks were first detected, a ground test (GR’47) was performed on
the LOX system using LN,. A visual check revealed a leak in the LOX prechill line. After repairs were
made, the subsequent test (GR’48) showed no visible leaks with LN,. However, GR’49 revealed a leak
in the LOX purge line’s check valve. The fittings on this valve were welded to eliminate the leak paths,
and the next ground test (GR’50) indicated no visible leaks again.

These ground tests were relying on visual checks of the LOX system using LN,. To verify the
same results in flight with LOX using the available oxygen sensors, another cold flow was attempted in
FLT’50. Once again, the sensors indicated leaks were present somewhere in the LOX system. Yet, the
oxygen sensors in flight could not indicate the exact location of the leaks, so further ground tests were
performed to locate the leaks with visual checks on the system.

26



Visual checks were performed in GR’53-56 with LN,. Minor leaks were found and fixed in
various parts of the system. When leaks could no longer be visually detected, GR’57-59 were performed
with LOX in the system so the oxygen sensors could be used. (Although initial concerns prevented
previous ground testing with LOX on the stationary aircraft, its surface was covered appropriately so this
testing could be performed.) Visual checks could not be performed at the same time because in order
to use the oxygen sensors the assembly had to be completely sealed.

Leaks were again detected with the sensors, so further visual checks with LN, were performed
in GR’60. In this test, all accessible joints and fittings were bagged using clear plastic material. Results
indicated some leakage downstream of the main LOX valve. The seal in its fitting was replaced and
when GR’61 was performed with LN,, no visual leaks were observed. GR’62 attempted to use LOX and
handheld oxygen sensors, but these sensors were inoperable, providing no useful leak detection.

Finally, GR’63 used LOX again and relied on the oxygen sensors available in the pod. Results
showed leak rates as high as 4.5 percent after the LOX autosafe procedure was performed. To determine
the altitude effects on these apparent leakage measurements, another LOX system blowdown in flight
was attempted in FLT’51. The tests were performed at an altitude of 31,000 ft and a Mach number of
0.9. Results actually indicated higher leak rates than those observed on the preceding ground test; values
reached 9.5 percent after the LOX autosafe procedure.

This final flight test (FLT’51) was conducted on October 29, 1998. At this point it appeared that
without a significant cost and schedule impact, the supply systems would never be leak tight to the levels
required by the FRR board for safely performing a hot-fire in flight. On November 20, 1998, NASA
announced the conclusion of the LASRE program.
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7. CONCLUSION

The LASRE program proved to be a very challenging project for NASA, the associated contrac-
tors, and the Air Force. Yet, along with numerous cold-flow tests, two successful hot-fire tests were
conducted on the LASRE system at Phillips Laboratory. Each of these tests provided data at chamber
pressures of =220 psia and mixture ratios close to 6 in the aerospike engine for 3 sec. After ground
configuration testing, the system was successfully integrated with the SR—71 aircraft for the flight test
program at DFRC.

Although successful hot-fire tests were never conducted in flight, a lot of useful data were
obtained for the aerospike engine design. In addition to the ground level hot-fire data, the cold-flow data
obtained in flight at various altitudes and speeds may prove useful for further evaluating this engine
configuration.

Also, the overall integration of the LASRE system with the SR—71 proved successful. Although
leaks in the engine supply systems could not be sufficiently eliminated, the aircraft performed well to
achieve specific data in flight. As a result, this program further demonstrated that such aircraft could be
successfully used as a valuable tool for evaluating other vehicle and engine concepts in a similar manner.
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APPENDIX A—Single Thruster Testing and Failure Investigation

A.1 Single Thruster Testing

Rocketdyne fabricated nine thruster assemblies, including eight for the LASRE engine. The
additional thruster was tested at SSFL to verify the design and recommended operating sequence. Objec-
tives included operating the single thruster over the chamber pressure range expected for the LASRE
engine (200-300 psia) with various mixture ratio levels (4.5-7). In addition, this thruster was supposed
to be tested for 1.5 times the total duration expected on the LASRE engine. Original test plans for the
LASRE engine included 40 tests for 3 sec each—for a total duration of 120 sec. The SSFL program
planned durations of 3, 12, and 40 sec to accumulate a total of 180 sec on the single thruster.

Twelve mainstage tests were actually conducted in September and October of 1995. Chamber
pressures ranged from 188-307 psia with various mixture ratio levels. Each test lasted 3, 12, or 40 sec in
duration. A total of 112 sec was accumulated on the single thruster before a failure in the 12th test ended
the program.

The failure damaged the liner’s upper surface, just downstream of the throat, as shown in
figure 12. The surface in the damaged area was roughened and burned for several inches. The liner
burned through to the coolant side in one localized area around coolant hole No. 10. (Prior to the failure,
the thermal barrier coating had begun to spall off in the chamber. However, this was not unusual or
unexpected, since the type of coatings used have a history of spalling in similar test environments.)

Inspections revealed the buildup of calcium carbonate (CaCOj5) deposits in nearly every coolant
channel. The heaviest concentration was in the channels around the damaged area. Since deionized water
was not available for this program at SSFL, the calcium in the facility water system reacted with the high
coolant temperatures during the hot-fires and created the solid scale buildup along the coolant channel
surfaces.

Burn Through

at g

>

N

Figure 12. Damage to liner after failure.
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The deposits decreased the effectiveness of the cooling water by creating a layer of low conduc-
tivity material along the coolant side of the liner. The coolant could not effectively transfer the heat that
built up on the liner’s hot wall. The resulting temperature rise on the hot wall was eventually high
enough to melt the copper surface and burn through. (A similar problem was experienced by MSFC
(circa 1987) when scale deposits from facility water eventually caused a calorimeter chamber to burn up.
After this incident, MSFC always used deionized water in its test programs. Rocketdyne normally uses
deionized water also, but it was not available for this program at SSFL.) A similar failure was not
expected for the LASRE engine, since all components were cooled with deionized water.

The failure of the single thruster raised additional concerns and prompted additional analyses of
the thruster design. During the failure investigation, detailed reviews of the hardware design, operating
levels, and the original analyses were conducted. The original thermal analysis predicted the “hottest”
region would be located directly upstream of the throat. However, the location of the failure suggested
the “hottest” region was directly downstream of the throat, since the amount of CaCO; formation was
proportional to the water temperature. In addition, the original analysis assumed equal coolant distribu-
tion among the 25 coolant holes, with 4 percent of the coolant flow provided to each.

However, Rocketdyne was able to make an aluminum replica of the thruster assembly, and when
they performed water flow tests on this replica they found that the coolant distribution varied signifi-
cantly, as illustrated in figure 13. The coolant holes near the injector end received the largest distribution
of coolant, while those near the throat received the least amount of coolant flow. Therefore, the coolant
flow was not optimized, since the injector end experienced much lower heating rates compared to the
throat area. In other words, the area that needed the most coolant was, in fact, receiving the least amount.
So, the original analysis was inaccurate since it assumed at least 4 percent of the coolant flow would be
available to cool the throat area, when actually only 2.8-3.2 percent of the flow was provided.

As aresult, new CFD and thermal analyses were performed by MSFC and reviewed with
Rocketdyne. Results showed the maximum heat flux was higher than originally predicted. When
accounting for this higher heat flux and the nonuniform coolant distribution, the maximum wall tem-
peratures were higher than originally predicted. In addition, the new thermal analysis showed the poten-
tial for film boiling, which would create a vapor phase of water in the coolant, reducing the effectiveness
of the liquid coolant. The presence of film boiling would create even higher wall temperatures.

2.8-3.2% Flow
Through Each Channel

Z

vy 47/7//
= //// Highest Q/A

Figure 13. Actual coolant distribution through coolant channels.
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When these results were shared with Rocketdyne, additional analyses were performed that
concluded no thermal safety margins were available for operating the LASRE engine thrusters at cham-
ber pressures as high as 300 psia. Minimal but acceptable margin was available for operating at chamber
pressures of 200 psia. For conservative operation, it was therefore recommended that system changes be
attempted to increase the amount of coolant flow available, or limit the LASRE engine testing to cham-
ber pressures of 200 psia.

(“Minimal margin” indicated less margin (=10 percent) than normally provided for flight hard-
ware (60 percent). The LASRE engine was considered “workhorse” hardware with a limited number of
short duration tests planned. So, while the minimal margin available was not optimal, it was acceptable
for the LASRE test program. In addition, any detrimental effects from “overheating” would be gradual
and evident from visual inspections of the hardware, so no catastrophic failure was implied from the
reduced margin available during operation.)

The results of the single thruster failure and subsequent analyses did create some changes to the
test conditions planned for the LASRE engine. Original hot-fire test conditions included chamber pres-
sures of 200, 250, and 300 psia with vectored burns performed by operating one side of the engine at
200 psia and the other side at 300 psia. With the thermal margin concerns, all testing was limited to a
conservative chamber pressure of 200 psia after the water blowdowns of the LASRE system showed that
higher coolant flow rates were unavailable. However, the chamber pressure of 200 psia was considered
adequate for obtaining data necessary to evaluate the aerospike engine performance. (These plans did
not preclude testing at higher chamber pressures or vectored conditions later in the program. If enough
confidence in the hardware existed after flight hot-fire test results and hardware inspections, higher
chamber pressures and/or a vectored burn would have been considered for the final flight hot-fire test.)
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APPENDIX B—Design Limits of LASRE Engine Components

braze joints were performed, and all joints proof tested/leak checked.

32

Table 4. Engine component testing specifications.

As required, engine components (table 4) were proof tested to 1.5 X maximum expected operat-
ing pressure (MEOP). Also, a factor of safety (F.S.) on ultimate >2.25 was required.

All welds were class 1 inspected (x-rayed to verify penetration), ultrasonic inspections of critical

Proof Pressure F.S. at
Max. Operating at 70 °F Operating Conditions
Component P(psi) T(°F) (psi) Ultimate Yield

Injector assembly alone

GH, 445 70 668 6.0 2.2

LOX 502 -290 668 20.0 4.8
Combustor assembly alone

H,0 600 170 987* 20.0 13.0
Thruster assembly hot gas joint 300 500 525 4.6 1.4
System plumbing

(not attached to engine)

GH, 460 70 690 6.0 2.2

LOX 526 -290 575* 20.0 4.8

Hy0 600 170 1,038* 53 2.0
Nozzle assembly

(w/H»Q inlets, mfds, ramps, fences)

H,0 450 - - >4.0 >1.5
RD plumbing to engine banks

(including venturies, valves, tees, etc.)

GHo 600 70 - >4.0 >1.5

LOX 600 -290 - >4.0 >1.5

H,0 600 170 - >4.0 >1.5
*Includes environmental correction factor: ECF=(Ftu at Tproof/Ftu at Toper)

(proof P = 1.5xMEOPXECF)




APPENDIX C—LASRE System Design Details

Details of the LASRE system design are shown in figures 14 and 15 and the line list, system
parts list, and interface list are shown in tables 5-7, respectively.

Canister Cartridge

Burst
Disk

Qutlet

Locking Pin
Location

¢ Hypergolic with LOX
e Supplied with flight-proven Atlas MA-5A cartridges
— Two cartridges on each flight
— 68 g of TEA-TEB in each cartridge
— Dual-burst disk configuration
(DOT certified)
— Canisters for cartridges delivered
by Rocketdyne with engine

Figure 14. TEA-TEB ignition system.
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Figure 15. Detailed schematic of LASRE systems, reference Rev. H of drawing ALS-LASRE-10000.
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Detailed schematic of LASRE systems, reference Rev. H of drawing

ALS-LASRE-10000 (Continued).

Figure 15.



Table 5. LASRE line lis
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Table 6. LASRE propulsion system parts list.
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Table 6. LASRE propulsion system parts list (Continued).
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Table 6. LASRE propulsion system parts list (Continued).
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Table 6. LASRE propulsion system parts list (Continued).
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Table 7. LASRE interface list.
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APPENDIX D—Instrumentation List

The LASRE program master measurement list is shown in table 8.



Table 8. LASRE program master measurement list.
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Table 8. LASRE program master measurement list (Continued).
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Table 8. LASRE program master measurement list (Continued).
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Table 8. LASRE program master measurement list (Continued).
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Table 8. LASRE program master measurement list (Continued).
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APPENDIX E—Operating Sequence

Note: States in the test sequence were defined as follows:

Normal operation:

Initialization inl
Master standby ms
Prestart psl
Start ssl
Cutoff col
Autosafe arm asl
Autosafe GH, as2
Autosafe LO, as3
Autosafe H,O as4
Mission complete standby mcs

(Although numbered in series, the autosafe procedures could be performed in any sequence. Generally,

as2 (GH,) and as4 (H,O) were performed before as3 (LO,).)

Abort procedures:
Master abort sequence mas
Master abort hold mah

The LASRE test sequence is shown in figure 16.
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Figure 16. LASRE test sequence.
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Figure 16. LASRE test sequence (Continued).
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Figure 16. LASRE test sequence (Continued).
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APPENDIX F—Summary of Steady-State Data

Note: Data from initial tests performed early in the program (GR’2-18) were not included in this
summary. Also, the final flight configuration tests (GR’58—63 and FLT’51) were performed primarily to
evaluate leaks in the LOX system; so, data from these tests were not included in the data summary
sheets. Instead, their LOX system results were only included in the steady-state data plots (pp. 69-70,
75) to compare the LOX results with other tests.

A quick-look summary of LASRE system and engine and performance during main flow is
shown in table 9, the system performance summary in table 10, and the engine performance summary in
table 11.

Steady-state trends are shown for the LOX system data (fig. 17), fuel system data (fig. 18), water
system data (fig. 19), and the thruster data (fig. 20). The LASRE engine supply systems are shown in

figure 21, and figure 22 shows the thrusters and water system.

Additional test notes are shown in table 12.

53



Table 9. Quick-look summary of LASRE system and engine performance.

Test # GRUNO0057* GRUN0056" GRUNO0055" GRUNO0054" GRUN0052" FLT0050* FLT0049**
Test date 9/18/98 9/11/98 8/19/98 8/14/98 7/30/98 7/23/98 4/15/98
Test location DFRC DFRC DFRC DFRC DFRC DFRC DFRC
Test Objective Fit. cold flow Fit. cold flow Fit. cold flow Fit. cold flow Fit. cold flow Fit. cold flow Fit. cold flow
Blow # 1 2 2 1 2 1 2 1 1 1
Systems
LOX System
Fluid LOX LOX LN2 LN2 LN2 LN2 LN2 LN2 LOX LOX
ave tank P (psia) 368 366 369 366 374 365 361 358 360 360
ave. venturi inlet P (psia) 353 347 350 341 348 343 338 336 350 343
ave. venturi inlet T (F) -278 -278 -300 -299 -300 -295 -296 -298 -277 -278
total LOX flow rate (Ib,/s) 11.8 11.6 114 11.2 114 11.0 11.0 11.1 1.7 11.7
Fuel System
Fluid GHe GHe GHe GHe GHe GHe GHe GHe GHe GHe
supply P - d/s of valve (psia) 589 585 589 585 589 589 589 586 589 589
ave. venturi inlet P (psig) 483 478 482 479 478 482 478 475 480 482
ave. venturi inlet T (F) 69 47 66 67 46 75 51 53 64 52
total fuel flow rate (Ib,/s) 3.3 33 3.2 3.2 3.3 3.2 3.3 3.2 3.2 3.2
Water System
Tank P (psia) 749 71 689 778 769 774 767 778 775 772
Engine Inlet P (psia) 578 551 534 600 594 599 597 608 603 603
Engine AP (psi) 383 358 346 397 392 389 387 399 399 404
Engine initial T (F) 72 73 69 74 74 77 76 84 85 62
Engine AT (F) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
est. flow rate (Ib,/s) 39.3 38.0 374 40.0 39.7 39.6 39.5 401 40.1 404
Engine
HIGH Thrust Side (TH1-4)
LOX flow rate, total (Ib,/s) 6.0 5.9 5.9 5.8 5.8 5.7 5.6 5.7 5.9 6.0
Fuel flow rate, total (Ib./s) 1.62 1.63 1.62 1.62 1.64 1.62 1.64 1.62 157 1.61
ave. Pc (psig) [injector end] 30 31 31 29 29 31 29 30 32 30
ave. MR n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
ave. C*, efficiency n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
LOW Thrust Side (TH5-8)
LOX flow rate, total (Ib,/s) 5.8 5.7 5.5 5.4 5.6 5.3 5.4 54 58 5.7
Fuel flow rate, total (Ib,/s) 1.63 1.64 1.63 1.61 1.64 1.62 1.64 1.62 1.59 1.61
ave. Pc (psig) [injector end] 31 30 29 28 29 30 28 29 31 31
ave. MR n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
ave. C*, efficiency n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
Altitude (ft) n/a n/a n/a n/a n/a n/a n/a n/a 31,000 26,000
Mach No. n/a n/a n/a n/a n/a n/a n/a n/a 0.9 0.75
Est. P. (psi) 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7 4.0 4.0
reference t(0) [PDT] 9:02:55 9:13:10 9:09:45 7:50:20 7:58:15 8:28:20 8:36:25 7:13:50 8:34:55 10:10:32
data taken at At (sec) 19.6 19.2 18.6 19.5 17.6 16.2 20.4 171 16.6 19.3
Mainstage duration (sec) 3 3 3 3 3 3 3 3 3 3
full full full full full full full full full full
reason for cutoff? duration | duration duration duration | duration duration | duration duration duration duration

* GHe used in fuel/TTEB systems

** |gnition test - GHe used in fuel system

A LN2/GHe used for LOX/GH2
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Table 9. Quick-look summary of LASRE system and engine performance (Continued).

Test # FLT0048" FLT0047% GRUN0046" GRUN0041* | GRUN0038" GRUN0037 GRUN0036 GRUN0035*
Test date 3/19/98 3/4/98 2/12/98 12/9/97 9/24/97 4/30/97 4/23/97 4/16/97
Test location DFRC DFRC DFRC DFRC DFRC Phillips Lab Phillips Lab Phillips Lab
Test Objective Fit. cold flow Fit. cold flow Fit. cold flow Fit. cold flow Fit. cold flow Gd. hot fire Gd. hot fire Gd. cold flow
Blow # 1 1 1 2 2 1 1 1 1
Systems
LOX System
Fluid LN2 LN2 LN2 LN2 LN2 LN2 LOX LOX LOX
ave tank P (psia) 366 364 369 367 367 360 373 370 375
ave. venturi inlet P (psia) 342 347 345 352 348 340 346 349 353
ave. venturi inlet T (F) -299 -299 -297 -297 -293 -302 -276 -279 -272
total LOX flow rate (Ib,/s) 11.3 11.3 11.1 11.3 10.9 11.3 115 11.7 115
Fuel System
Fluid GHe GHe GHe GHe GHe GHe GH2 GH2 GHe
supply P - d/s of valve (psia) 589 589 593 587 589 585 585 585 589
ave. venturi inlet P (psig) 484 481 484 479 475 479 466 468 459
ave. venturi inlet T (F) 65 57 62 64 75 52 40 31 69
total fuel flow rate (Ib,/s) 3.2 3.2 3.3 3.3 3.2 3.3 2.1 2.1 3.1
Water System
Tank P (psia) 760 775 774 747 774 774 781 778 772
Engine Inlet P (psia) 596 599 606 584 603 613 601 601 597
Engine AP (psi) 400 400 400 388 390 359 398 402 402
Engine initial T (F) 67 68 56 57 55 77 63 60 68
Engine AT (F) n/a n/a n/a n/a n/a n/a 70 63 n/a
est. flow rate (Ib,/s) 40.2 40.2 40.2 39.6 39.7 38.0 40.1 40.2 40.3
Engine
HIGH Thrust Side (TH1-4)
LOX flow rate, total (Ib,/s) 58 5.8 5.7 58 56 58 5.9 6.0 59
Fuel flow rate, total (Ib./s) 1.58 1.58 1.65 1.62 1.59 1.62 1.03 1.06 1.54
ave. Pc (psig) [injector end] 30 28 29 31 29 28 212 213 31
ave. MR n/a n/a n/a n/a n/a n/a 57 57 n/a
ave. G*, efficiency n/a n/a n/a n/a n/a n/a 96 94 n/a
LOW Thrust Side (TH5-8)
LOX flow rate, total (Ib,/s) 5.5 5.5 5.4 55 5.3 5.5 5.6 5.7 5.6
Fuel flow rate, total (Ib/s) 1.60 1.60 1.64 1.63 1.60 1.64 1.04 1.06 1.55
ave. Pc (psig) [injector end] 29 30 29 29 28 29 201 201 32
ave. MR n/a n/a n/a n/a n/a n/a 5.4 5.4 n/a
ave. G*, efficiency n/a n/a n/a n/a n/a n/a 94 92 n/a
Altitude (ft) 31,000 41,000 n/a n/a n/a n/a n/a n/a n/a
Mach No. 0.9 1.2 n/a n/a n/a n/a n/a n/a n/a
Est. P,y (psi) 4.0 3.0 14.7 14.7 14.7 14.7 14.7 14.7 14.7
reference t(0) [PDT] 10:35:14 10:54:15 9:12:55 9:20:55 9:54:05 8:15:50 12:50:45 13:18:47 14:49:20
data taken at At (sec) 19.3 19.2 16.6 17.6 15.0 18.0 18.7 6.1 23.8
Mainstage duration (sec) 3 3 3 1 1 3 3 3 3
Abort with
CNTRPWR| Abort with
full full full OFF as EMERSS as full full full full
reason for cutoff? duration duration duration planned planned duration duration duration duration

* GHe used in fuel/TTEB systems
** Ignition test - GHe used in fuel system

A LN2/GHe used for LOX/GH2
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Table 9. Quick-look summary of LASRE system and engine performance (Continued).

Test # GRUNO0057* GRUN0056" GRUN0055" GRUNO0054" GRUN0052" FLT0050* FLT0049**
Test date 9/18/98 9/11/98 8/19/98 8/14/98 7/30/98 7/23/98 4/15/98
Test location DFRC DFRC DFRC DFRC DFRC DFRC DFRC
Test Objective Fit. cold flow Fit. cold flow Flt. cold flow Fit. cold flow Flt. cold flow | Fit. cold flow Fit. cold flow
Blow # 1 2 2 1 2 1 2 1 1 1
Systems
LOX System
Fluid LOX LOX LN2 LN2 LN2 LN2 LN2 LN2 LOX LOX
ave tank P (psia) 368 366 369 366 374 365 361 358 360 360
ave. venturi inlet P (psia) 353 347 350 34 348 343 338 336 350 343
ave. venturi inlet T (F) -278 -278 -300 -299 -300 -295 -296 -298 -277 -278
total LOX flow rate (Ib,/s) 11.8 11.6 1.4 11.2 11.4 11.0 11.0 1.1 1.7 1.7
Fuel System
Fluid GHe GHe GHe GHe GHe GHe GHe GHe GHe GHe
supply P - d/s of valve (psia) 589 585 589 585 589 589 589 586 589 589
ave. venturi inlet P (psig) 483 478 482 479 478 482 478 475 480 482
ave. venturi inlet T (F) 69 47 66 67 46 75 51 53 64 52
total fuel flow rate (Ib,/s) 3.3 3.3 3.2 3.2 3.3 3.2 3.3 3.2 3.2 3.2
Water System
Tank P (psia) 749 71 689 778 769 774 767 778 775 772
Engine Inlet P (psia) 578 551 534 600 594 599 597 608 603 603
Engine AP (psi) 383 358 346 397 392 389 387 399 399 404
Engine initial T (F) 72 73 69 74 74 77 76 84 85 62
Engine AT (F) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
est. flow rate (Ib,/s) 39.3 38.0 37.4 40.0 39.7 39.6 39.5 40.1 40.1 40.4
Engine
HIGH Thrust Side (TH1-4)
LOX flow rate, total (Ib,/s) 6.0 5.9 5.9 5.8 5.8 5.7 5.6 5.7 5.9 6.0
Fuel flow rate, total (Ib,/s) 1.62 1.63 1.62 1.62 1.64 1.62 1.64 1.62 1.57 1.61
ave. Pc (psig) [injector end] 30 31 31 29 29 31 29 30 32 30
ave. MR n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
ave. C*, efficiency n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
LOW Thrust Side (TH5-8)
LOX flow rate, total (Ib,/s) 5.8 5.7 5.5 5.4 5.6 5.3 5.4 5.4 5.8 5.7
Fuel flow rate, total (Ib/s) 1.63 1.64 1.63 1.61 1.64 1.62 1.64 1.62 1.59 1.61
ave. Pc (psig) [injector end] 31 30 29 28 29 30 28 29 31 31
ave. MR n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
ave. C*, efficiency n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
Altitude (ft) n/a n/a n/a n/a n/a n/a n/a n/a 31,000 26,000
Mach No. n/a n/a n/a n/a n/a n/a n/a n/a 0.9 0.75
Est. P (pSi) 14.7 147 147 14.7 14.7 14.7 14.7 14.7 4.0 4.0
reference t(0) [PDT] 9:02:55 9:13:10 9:09:45 7:50:20 7:58:15 8:28:20 8:36:25 7:13:50 8:34:55 10:10:32
data taken at At (sec) 19.6 19.2 18.6 19.5 17.6 16.2 20.4 171 16.6 19.3
Mainstage duration (sec) 3 3 3 3 3 3 3 3 3 3
full full full full full full full full full full
reason for cutoff? duration | duration duration duration | duration | duration | duration duration duration duration

* GHe used in fuel/TTEB systems

** Ignition test - GHe used in fuel system

A LN2/GHe used for LOX/GH2
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Table 9. Quick-look summary of LASRE system and engine performance (Continued).

Test # GRUN0027* GRUN0026* GRUN0025* GRUN0024* GRUN0023* GRUN0022*
Test date 12/3/96 11/22/96 11/15/96 11/1/96 10/25/96 10/12/96
Test location Phillips Lab Phillips Lab Phillips Lab Phillips Lab Phillips Lab Phillips Lab
Test Objective Gd. cold flow Gd. cold flow Gd. cold flow Gd. cold flow Gd. cold flow Gd. cold flow
Blow # 1 2 1 2 1 2 1 " 1 2 1 2
Systems
LOX System
Fluid LOX LOX LOX LOX LOX LOX LOX LOX LOX LOX LOX LOX
ave tank P (psia) 367 366 375 369 369 376 3n 372 373 373 369 368
ave. venturi inlet P (psia) 348 341 352 355 353 355 349 351 349 349 341 352
ave. venturi inlet T (F) -269 -266 -270 -268 -269 -271 -266 -254 -269 -270 -263 -261
total LOX flow rate (Ib./s) 11.1 10.7 11.3 11.2 11.2 11.4 10.8 10.1 11.2 11.2 10.7 10.6
Fuel System
Fluid GHe GHe GHe GHe GHe GHe GHe GHe GHe GHe GHe GHe
supply P - d/s of valve (psia) 593 16 593 591 592 589 593 589 566 578 593 589
ave. venturi inlet P (psig) 451 -3 453 451 457 456 458 455 437 453 468 466
ave. venturi inlet T (F) 74 58 82 49 73 67 88 78 68 52 91 78
total fuel flow rate (Ib./s) 3.0 n/a 3.0 3.1 3.1 3.1 3.0 3.0 2.9 3.1 3.1 3.1
Water System
Tank P (psia) 781 781 777 771 779 777 769 777 780 777 773 772
Engine Inlet P (psia) 624 677 619 626 617 643 605 610 607 602 606 602
Engine AP (psi) 446 581 439 459 435 486 407 422 412 411 411 406
Engine initial T (F) 45 44 56 54 54 52 61 63 59 57 78 77
Engine AT (F) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
est. flow rate (Ib,/s) 36.1 26.5 35.2 33.7 35.6 32.4 40.5 36.2 40.8 40.7 40.7 40.5
Engine
HIGH Thrust Side (TH1-4)
LOX flow rate, total (Ib./s) 55 5.4 5.7 5.7 5.6 5.7 5.4 5.0 5.6 56 5.4 5.2
Fuel flow rate, total (Ib./s) 1.53 n/a 1.52 1.57 1.54 1.54 1.52 1.51 1.48 1.54 1.51 1.51
ave. Pc (psig) [injector end] 30 2 31 31 31 30 31 30 29 31 31 31
ave. MR n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
ave. C*, efficiency n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
LOW Thrust Side (TH5-8)
LOX flow rate, total (Ib./s) 5.6 53 5.6 55 5.6 5.7 5.4 5.1 5.6 5.6 53 5.4
Fuel flow rate, total (Ib./s) 1.50 n/a 1.48 1.53 1.51 1.52 1.50 1.51 1.46 1.55 1.58 1.59
ave. Pc (psig) [injector end] 31 1 31 30 29 29 32 32 30 31 31 31
ave. MR n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
ave. C*, efficiency n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
Altitude (ft) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
Mach No. n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
Est. Pun (psi) 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7
reference t(0) [PDT] 13:15:44 | 13:23:00 | 13:51:25 | 14:00:04 [ 13:39:55 | 13:46:05 | 12:38:50 | 14:01:40 | 13:54:50 | 14:01:30 | 14:32:00 | 14:38:20
data taken at At (sec) 36.0 41.8 41.0 41.0 40.0 39.3 40.0 40.0 43.0 41.0 45.5 47.0
Mainstage duration (sec) 3 0 3 3 3 ~0.8 3 3 3 3 3 3
full PTﬁ?ngﬁlL full full full mﬁ;ne m’sﬁ full full full full full full
reason for cutoff? duration water) duration duration duration disc failed) | duration duration duration duration duration duration

* GHe used in fuel/TTEB systems
** |gnition test - GHe used in fuel system

~ LN2/GHe used for LOX/GH2
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Table 9. Quick-look summary of LASRE system and engine performance (Continued).

Test # GRUN0020* GRUN0019*
Test date 9/1/96 7/26/96
Test location Phillips Lab Phillips Lab
Test Objective Gd. cold flow Gd. cold flow
Blow # 1 2 1 2
Systems
LOX System
Fluid LOX LOX LOX LOX
ave tank P (psia) 363 363 370
ave. venturi inlet P (psia) 345 347 336
ave. venturi inlet T (F) -267 -276 -273
total LOX flow rate (Ib,/s) 111 115 11.3
Fuel System
Fluid GHe GHe GHe GHe
supply P - d/s of valve (psia) 320 581 577
ave. venturi inlet P (psig) 250 456 458
ave. venturi inlet T (F) 110 98 82
total fuel flow rate (Ib,/s) 1.7 3.0 3.1
Water System
Tank P (psia) 781 774 766
Engine Inlet P (psia) 579 574 556
Engine AP (psi) 389 377 377
Engine initial T (F) 87 91 92
Engine AT (F) n/a n/a n/a
est. flow rate (Ib,/s) 39.6 39.6 39.6
Engine
HIGH Thrust Side (TH1-4)
LOX flow rate, total (Ib,/s) 5.6 58 56
Fuel flow rate, total (Ib,/s) 0.82 1.49 152
ave. Pc (psig) [injector end] 18 32 31
ave. MR n/a n/a n/a
ave. C*, efficiency n/a n/a n/a
LOW Thrust Side (TH5-8)
LOX flow rate, total (Ib,/s) 55 57 57
Fuel flow rate, total (Ib,/s) 0.86 152 153
ave. Pc (psig) [injector end] 14 32 30
ave. MR n/a n/a n/a
ave. C*, efficiency n/a n/a n/a
Altitude (ft) n/a n/a n/a n/a
Mach No. n/a n/a n/a n/a
Est. P (psi) 147 147 14.7 14.7
reference t(0) [PDT] 13:55:15 | 14:05:00 | 14:22:45 | 14:26:55
data taken at At (sec) 38.0 45.0 38.0
Mainstage duration (sec) 3 0 3 3
full PS1:17 limit full full
reason for cutoff? duration | onLOXAT | duration | duration

* GHe used in fuel/TTEB systems
** |gnition test - GHe used in fuel system
A LN2/GHe used for LOX/GH2



Table 10. Summary of LASRE system performance.

Test # GRUN0057* GRUN0056* GRUNO0055* GRUNO0054 GRUN0052*| FLT0050* | FLT0049**
Test date 9/18/98 9/11/98 8/19/98 8/14/98 7/30/98 7/23/98 4/15/98
Test Objective Fit. cold flow Fit. cold flow]  Fit. cold flow Fit. cold flow Fit. cold flow] Fit. cold flow| Fit. cold flow]
Blow # 1 2 2 1 2 1 2 1 1 1
LOX System
ave. tank P (psia) [PT0302 & PT0301] 368 366 369 366 374 365 361 358 360 360
100% venturi inlet P (psia) [PT0360] 354 347 351 342 343 3 34 335 3 347
100% venturi inlet Ty(F) [TT0360] -281 -280 -305 -302 -304 -299 -297 -300 -280 -282
100% venturi ACd (in) 0.0609 | 0.0609 0.0609 0.0609 | 0.0609 | 0.0609 | 0.0609 0.0609 0.0609 0.0609
100% venturi flow rate (Iby/s) 6.0 5.9 5.9 5.8 5.8 5.7 5.6 5.7 5.9 6.0
80% venturi inlet P (psia) [PT0363] 351 346 349 342 349 346 336 334 364 3
80% venturi inlet T (F) [TT0363] -279 -278 -298 -300 -299 -295 -299 -301 -278 -278
80%venturi throat P (psia) [PT0362] 37 32 35 33 27 45 39 34 36 40
80% venturi ACd (in2) 0.0473 | 0.0473 0.0473 0.0473 | 0.0473 | 0.0473 | 0.0473 0.0473 0.0473 0.0473
80% venturi flow rate (Iby,/s) 47 46 44 44 45 43 4.4 44 47 46
20% venturi inlet P (psia) [PT0364] 353 349 350 339 354 34 337 340 345 340
20% venturi inlet T (F) [TT0364] -276 -276 -297 -295 -298 -290 -293 -293 -274 -274
20% venturi throat P, (psia) [PT0361] 48 48 49 51 54 59 58 52 54 50
20% venturi ACd (in) 0.01154| 0.01154| 0.01154 | 0.01154| 0.01154| 0.01154| 0.01154| 0.01154 0.01154 0.01154
20% venturi flow rate (Iby/s) 1.1 1.1 11 1.0 11 1.0 1.0 1.0 1.1 141
LOX flow rate (Iby/s), high thrust side 6.0 5.9 5.9 5.8 5.8 5.7 5.6 5.7 5.9 6.0
LOX flow rate (Iby/s), low thrust side 5.8 5.7 5.5 5.4 5.6 5.3 54 5.4 5.8 5.7
Fuel System
Tanks (psia) [PT0101] 4209 3043 4283 4203 3044 4107 2884 2687 2840 3671
Supply d/s of valve (psia) [PT0102] 589 585 589 585 589 589 589 586 589 589
100% venturi inlet P (psig) [PT0160] 481 474 480 480 477 483 477 474 475 479
100% venturi inlet T (F) [TT0160] 65 45 64 64 43 73 49 52 62 50
100% venturi ACd (in?) 0.3575 | 0.3575 0.3575 0.3575 | 0.3575 [ 0.3575 | 0.3575 0.3575 0.3575 0.3575
100% venturi flow rate (Iby/s) 1.62 1.63 1.62 1.62 1.64 1.62 1.64 1.62 1.57 1.61
80% venturi inlet P (psig) [PT0163] 487 479 484 482 480 486 481 477 478 479
80% venturi inlet T (F) [TT0163] 7 49 68 69 49 75 54 54 64 52
80% venturi ACd (in?) 0.2816 | 0.2816 0.2816 0.2816 | 0.2816 | 0.2816 | 0.2816 0.2816 0.2816 0.2816
80% venturi flow rate (lby/s) 1.29 1.29 1.28 1.28 1.30 1.28 1.29 1.28 1.25 1.26
20% venturi inlet P (psig) [PT0164] 481 481 482 473 476 477 475 474 486 489
20% venturi inlet T (F) [TT0164] 70 46 65 67 46 77 50 54 65 55
20% venturi ACd (in?) 0.07559 | 0.07559 0.07559 | 0.07559| 0.07559 | 0.07559| 0.07559| 0.07559 0.07559 0.07559
20% venturi flow rate (Iby/s) 0.34 0.35 0.34 0.34 0.35 0.34 0.34 0.34 0.34 0.34
Fuel flow rate (Iby/s), high thrust side 1.62 1.63 1.62 1.62 1.64 1.62 1.64 1.62 1.57 1.61
Fuel flow rate (Iby/s), low thrust side 1.63 1.64 1.62 1.62 1.65 1.62 1.63 1.62 1.59 1.61
TTEB System
Supply P to engine (psia) [PT0651] 599 611 615 603 610 606 612 608 595 581
TTEB density (|bm/ft3) GHe purae | GHe nurae|  GHe purge | GHe purae | GHe purae | GHe nurae | GHe purae [  GHe purge GHe purge GHe purge
Orifice to each thruster (in) 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026
flow rate to each thruster (Ib/s) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
Water System
Tank P (psia) [PT0401] 749 711 689 778 769 774 767 778 775 772
Engine inlet P (psia) [PT0451] 578 551 534 600 594 599 597 608 603 603
Engine exit P (psia) [PT0453] 195 193 187 203 202 210 210 210 204 199
Engine AP (psi) 383 358 346 397 392 389 387 399 399 404
Engine inlet T (F) [TT0451] 72 73 69 74 74 77 76 84 85 62
Engine exit T (F) [TT0453] 66 64 62 67 66 7 70 76 76 49
min. initial engine exit T (F) [TT0453] n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
Engine AT (F) relative to TT0453 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
High Thrust Side Ramp
Upper T (F) [TT0455] 70 70 68 72 72 76 74 83 83 48
Lower T (F) [TT0456] 70 70 68 72 7 75 75 82 81 54
Low Thrust Side Ramp
Upper T (F) [TT0457] 72 72 68 72 7 77 76 83 84 55
Lower T (F) [TT0458] 7 70 68 72 72 76 75 83 82 55
Total water flow rate (Iby/s)*** 39.3 38.0 37.4 40.0 39.7 39.6 39.5 40.1 40.1 40.4

* GHe used in fuel/TTEB systems **Ignition test- GHe used in fuel system

***est. w/engine AP when F/M inop

A LN2/GHe used for LOX/GH2

59



Table 10. Summary of LASRE system performance (Continued).

GRUN0D046"

Test # FLT0048" FLT00477 GRUNO0041~ | GRUN0038~ | GRUN0037 | GRUN0036 | GRUN0035*
Test date 3/19/98 3/4/98 2/12/98 12/9/97 9/24/97 4/30/97 4/23/97 4/16/97
Test Objective Fit. cold flow | Fit. cold flow Fit. coid flow Flt. cold flow | Fit. cold flow | Gd. hot fire | Gd. hot fire | Gd. cold flow
Blow # 1 1 1 2 2 1 1 1 1
LOX System
ave. tank P (psia) [PT0302 & PT0301] 366 364 369 367 367 360 373 370 375
100% venturi inlet P (psia) [PT0360] 344 349 346 352 349 338 351 352 361
100% venturi inlet T (F) [TT0360] -301 -304 -300 -300 -296 -304 -276 -281 -273
100% venturi ACd (in2) 0.0609 0.0609 0.0609 0.0609 0.0609 0.0609 0.0609 0.0609 0.0609
100% venturi flow rate (Ib,,/s) 5.8 5.8 5.7 5.8 5.6 5.8 5.9 6.0 5.9
80% venturi inlet P (psia) [PT0363] 341 348 342 348 345 337 341 347 350
80% venturi inlet T (F) [TT0363] -300 -298 -298 -299 -294 -302 -277 -280 -273
80% venturi throat P (psia) [PT0362] 39 39 34 39 44 n/a 28 31 38
80% venturi ACd (in2) 0.0473 0.0473 0.0473 0.0473 0.0473 0.0473 0.0473 0.0473 0.0473
80% venturi flow rate (lb,/s) 44 44 4.4 45 4.3 44 4.5 4.60 4.5
20% venturi inlet P (psia) [PT0364] 342 344 346 356 350 344 346 350 349
20% venturi inlet T (F) [TT0364] -295 -296 -295 -293 -290 -299 -274 -277 -269
20% venturi throat P (psia) [PT0361] 51 50 49 54 57 51 74 84 51
20% venturi ACd (in2) 0.01154 0.01154 0.01154 [ 0.01154 0.01154 0.01154 0.01154 0.01154 0.01154
20% venturi flow rate (lb,/s) 1.1 1.1 1.0 1.0 1.0 1.1 11 1.1 1.1
LOX flow rate (Ib,/s), high thrust side 5.8 58 5.7 5.8 5.6 5.8 5.9 6.0 5.9
LOX flow rate (Ib,,/s), low thrust side 55 55 5.4 55 5.3 55 5.6 5.7 5.6
Fuel System
Tanks (psia) [PT0101] 4205 3947 4326 4058 5123 2539 2325 2308 2712
Supply d/s of valve (psia) [PT0102] 589 589 593 587 589 585 585 585 589
100% venturi inlet P (psig) [PT0160] 479 475 487 478 475 474 466 469 457
100% venturi inlet T (F) [TT0160] 64 55 60 62 73 51 39 29 67
100% venturi ACd (in2) 0.3575 0.3575 0.3575 0.3575 0.3575 0.3575 0.3575 0.3575 0.3575
100% venturi flow rate (Ib,,/s) 1.58 1.58 1.65 1.62 1.59 1.62 1.03 1.06 1.54
80% venturi inlet P (psig) [PT0163] 486 479 487 484 480 480 467 470 461
80% venturi inlet T (F) [TT0163] 65 57 61 64 76 53 4 32 69
80% venturi ACd (in?) 0.2816 0.2816 0.2816 0.2816 0.2816 0.2816 0.2816 0.2816 0.2816
80% venturi flow rate (lb,/s) 1.26 1.25 1.30 1.29 1.26 1.29 0.82 0.84 1.22
20% venturi inlet P (psig) [PT0164] 487 489 477 476 471 483 466 465 458
20% venturi inlet T (F) [TT0164] 67 59 63 65 77 53 42 32 70
20% venturi ACd (in?) 0.07559 0.07559 0.07559 | 0.07559 0.07559 0.07559 0.07559 0.07559 0.07559
20% venturi flow rate (lb,/s) 0.34 0.34 0.34 0.34 0.33 0.35 0.22 0.22 0.33
Fuel flow rate (Iby,/s), high thrust side 1.58 1.58 1.65 1.62 1.59 1.62 1.03 1.06 1.54
Fuel flow rate (Iby/s), low thrust side 1.60 1.60 1.64 1.63 1.60 1.64 1.04 1.06 1.55
TTEB System
Supply P to engine (psia) [PT0651] 588 586 591 621 616 609 604 610 588
TTEB density (Ib,/ft3) GHe purge GHe purge  [GHe purge |GHe purge| GHe purge GHe purge | GHe purge [ GHe purge | GHe purge
Orifice to each thruster (in) 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026
flow rate to each thruster (Ib,/s) n/a n/a n/a n/a n/a n/a n/a n/a n/a
Water System
Tank P (psia) [PT0401] 760 775 774 747 774 774 781 778 772
Engine inlet P (psia) [PT0451] 596 599 606 584 603 613 601 601 597
Engine exit P (psia) [PT0453] 196 199 206 196 212 254 203 199 195
Engine AP (psi) 400 400 400 388 390 359 398 402 402
Engine inlet T (F) [TT0451] 67 68 56 57 55 77 64 65 68
Engine exit T (F) [TT0453] 59 59 51 49 48 69 133 123 64
min. initial engine exit T (F) [TT0453] n/a n/a n/a n/a n/a n/a 63 60 n/a
Engine AT (F) relative to TT0453 n/a n/a n/a n/a n/a n/a 70 63 n/a
High Thrust Side Ramp
Upper T (F) [TT0455] 57 58 47 47 45 66 147 144 69
Lower T (F) [TT0456] 64 65 54 53 51 73 147 145 70
Low Thrust Side Ramp
Upper T (F) [TT0457] 69 68 60 59 54 75 148 144 71
Lower T (F) [TT0458] 65 64 55 55 54 74 140 136 70
Total water flow rate (Ib,,/s)*** 40.2 40.2 40.2 39.6 39.7 38.0 401 40.2 40.3

* GHe used in fuel/TTEB systems
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Table 10. Summary of LASRE system performance (Continued).

Test # GRUN0033** GRUN0032** GRUN0D031** GRUN0030* | GRUN0029* | GRUND028*
Test date 2/6/97 1/31/97 1/23/97 1/18/97 12/17/96 12/11/96
Test Objective Ignition test Ignition test Ignition test Gd. cold flow | Gd. cold flow |Gd. cold flow
Blow # 1-ign 1-main 2-ign 2-main 1-ign 1-main 1-ign 1-main 1 2 1
LOX System
ave. tank P (psia) [PT0302 & PT0301] 377 369 369 369 370 362 365 372 369 372 360
100% venturi inlet P (psia) [PT0360] 354 351 352 354 368 361 354 355 349 348 350
100% venturi inlet T (F) [TT0360] -273 -279 -270 -274 -246 -252 -274 -281 -278 -279 -282
100% venturi ACd (in?) 0.0609 0.0609 0.0609 0.0609 0.0609 0.0609 0.0609 0.0609 0.0609 0.0609 0.0609
100% venturi flow rate (Ib,,/s) 5.8 5.9 5.7 5.8 3.0 4.0 5.8 5.9 5.9 5.9 6.0
80% venturi inlet P (psia) [PT0363] 357 352 343 343 355 347 345 351 344 340 344
80% venturi inlet T (F) [TT0363] -273 -276 -270 -273 -248 -253 -272 -279 -276 -277 -280
80% venturi throat P (psia) [PT0362] 41 36 45 34 262 216 49 35 25 27 36
80% venturi ACd (in?) 0.0473 | 0.0473 | 0.0473 | 0.0473 0.0473 | 0.0473 | 0.0473 | 0.0473 0.0473 0.0473 0.0473
80% venturi flow rate (Ib,/s) 4.6 46 44 45 2.4 2.9 45 4.6 4.6 45 4.6
20% venturi inlet P (psia) [PT0364] 355 355 344 347 359 354 346 349 352 346 348
20% venturi inlet T (F) [TT0364] -266 279 -262 -272 -239 -239 -266 -279 -277 -276 -278
20% venturi throat P (psia) [PT0361] 76 50 66 51 238 195 67 48 47 44 51
20% venturi ACd (in?) 0.01154 | 0.01154 | 0.01154 | 0.01154 0.01154 | 0.01154 | 0.01154 | 0.01154 0.01154 0.01154 0.01154
20% venturi flow rate (Ib,/s) 1.1 1.1 1.0 1.1 0.7 0.8 1.0 1.1 1.1 1.1 1.1
LOX flow rate (Ib,/s), high thrust side 5.8 5.9 5.7 5.8 3.0 4.0 5.8 5.9 5.9 5.9 6.0
LOX flow rate (Ib,/s), low thrust side 5.7 5.7 5.4 5.6 3.1 3.65 55 5.7 5.7 5.6 57
Fuel System
Tanks (psia) [PT0101] 6147 5048 5305 4329 6099 4788 6050 4465 3669 4595 4739
Supply d/s of valve (psia) [PT0102] GHe purge 593  |GHepurge [ 593 GHe purge | 589  |GHe purge| 589 589 593 593
100% venturi inlet P (psig) [PT0160] 30 462 37 460 13 459 34 460 463 458 467
100% venturi inlet T (F) [TT0160] 65 66 55 56 70 75 58 58 47 54 68
100% venturi ACd (in2) 0.3575 0.3575 0.3575 0.3575 0.3575 0.3575 0.3575 0.3575 0.3575 0.3575 0.3575
100% venturi flow rate (lb,,/s) n/a 1.56 n/a 1.57 n/a 1.54 n/a 1.57 1.59 1.57 1.57
80% venturi inlet P (psig) [PT0163] 34 47 32 469 13 468 34 464 470 467 464
80% venturi inlet T (F) [TT0163] 57 68 55 58 72 77 58 60 49 56 69
80% venturi ACd (in?) 0.2816 0.2816 0.2816 0.2816 0.2816 0.2816 0.2816 0.2816 0.2816 0.2816 0.2816
80% venturi flow rate (Ib,,/s) n/a 1.25 n/a 1.26 n/a 1.23 n/a 1.24 1.27 1.25 1.23
20% venturi inlet P (psig) [PT0164] 34 466 42 462 17 464 34 465 456 459 452
20% venturi inlet T (F) [TT0164] 57 68 56 61 73 79 59 61 50 59 70
20% venturi ACd (in?) 0.07559 | 0.07559 | 0.07559 [ 0.07559 0.07559 | 0.07559 | 0.07559 | 0.07559 0.07559 0.07559 0.07559
20% venturi flow rate (Ibm/s) n/a 0.33 n/a 0.33 n/a 0.33 n/a 0.33 0.33 0.33 0.32
Fuel flow rate (Ib,,/s), high thrust side n/a 1.56 n/a 1.57 n/a 1.54 n/a 1.57 1.59 157 157
Fuel flow rate (Ib,/s), low thrust side n/a 1.58 n/a 1.59 n/a 1.56 n/a 1.58 1.60 1.58 1.55
TTEB System
Supply P to engine (psia) [PT0651] 693 606 704 595 709 624 690 597 599 599 590
TTEB density (Ib,/ft3) 445 GHe purge | 445  |GHe purge 445 |GHepurge| 445 |[GHe purge n/a n/a n/a
Orifice to each thruster (in) 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026
flow rate to each thruster (Ib,/s) 0.036 n/a 0.036 n/a 0.037 n/a 0.036 n/a n/a n/a n/a
Water System
Tank P (psia) [PT0401] 772 780 742 779 775 779 777 775 780 778 780
Engine inlet P (psia) [PT0451] 585 588 570 598 593 598 598 589 593 600 606
Engine exit P (psia) [PT0453] 193 200 178 188 199 198 198 190 203 202 197
Engine AP (psi) 392 388 392 410 394 400 400 399 390 398 409
Engine inlet T (F) [TT0451] 45 46 48 47 56 57 52 51 47 48 53
Engine exit T (F) [TT0453] 44 M 43 42 56 55 48 47 43 # 46
min. initial engine exit T (F) [TT0453] n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
Engine AT (F) relative to TT0453 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
High Thrust Side Ramp
Upper T (F) [TT0455] 48 48 43 48 61 61 52 52 43 49 52
Lower T (F) [TT0456] 45 46 46 46 59 60 51 51 47 47 51
Low Thrust Side Ramp
Upper T (F) [TT0457] 48 48 48 46 62 61 53 52 49 49 53
Lower T (F) [TT0458] 48 47 47 46 60 60 53 53 49 47 54
Total water flow rate (Ib,/s)*** 39.8 39.5 39.8 40.7 39.9 40.2 40.2 40.1 39.7 40.1 40.6

* GHe used in fuel/TTEB systems

** |gnition test - GHe used in fuel system

*ok ok

est. w/engine AP when F/M inop

N LN2/GHe used for LOX/GH2
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Table 10. Summary of LASRE system performance (Continued).

Test # GRUN0027* GRUN0026* GRUN0025* GRUN0024* GRUN0023* GRUN0022*
Test date 12/3/96 11/22/96 11/15/96 11/9/96 10/25/96 10/12/96
Test Objective Gd. cold flow Gd. cold flow Gd. cold flow Gd. cold flow Gd. cold flow Gd. cold flow
Blow # 1 2 1 2 1 2 1 2" 1 2 1 2
LOX System
ave. tank P (psia) [PT0302 & PT0301] 367 366 375 369 369 376 371 372 373 373 369 368
100% venturi inlet P (psia) [PT0360] 345 341 360 362 356 357 349 353 352 351 assume 350
100% venturi inlet T (F) [TT0360] -267 -264 -267 -266 -267 -268 -262 -251 -266 -267 -261 -257
100% venturi ACd (in?) 0.0609 | 0.0609 0.0609 | 0.0609 | 0.0609 | 0.0609 [ 0.0609 | 0.0609 0.0609 | 0.0609 | 0.0609 | 0.0609
100% venturi flow rate (Ib,,/s) 5.5 5.4 5.7 5.7 5.6 5.7 54 5.0 5.6 5.6 5.4 5.2
80% venturi inlet P (psia) [PT0363] 349 337 347 348 352 354 351 348 345 346 347 352
80% venturi inlet T (F) [TT0363] -271 -268 -273 -270 -270 -274 -268 -257 -273 -273 -266 -266
80% venturi throat P (psia) [PT0362] 26 31 33 29 29 34 27 52 33 29 48 46
80% venturi ACd (in2) 0.0473 | 0.0473 0.0473 | 0.0473 | 0.0473 | 0.0473 | 0.0473 | 0.0473 0.0473 | 0.0473 | 0.0473 | 0.0473
80% venturi flow rate (Ib,/s) 45 43 45 4.4 45 46 4.4 41 45 45 43 4.4
20% venturi inlet P (psia) [PT0364] 351 346 350 356 351 354 347 351 349 349 335 352
20% venturi inlet T (F) [TT0364] -269 -267 -270 -269 -270 -272 -268 -253 -269 -269 -262 -261
20% venturi throat P (psia) [PT0361] 41 48 44 43 42 4 47 70 49 44 67 62
20% venturi ACd (in2) 0.01154 |0.01154 | 0.01154 |0.01154 |0.01154 |0.01154 | 0.01154 | 0.01154 | 0.01154 | 0.01154 | 0.01154 | 0.01154
20% venturi flow rate (Ib/s) 1.1 1.0 1.1 1.1 11 11 1.0 1.0 11 141 1.0 1.0
LOX flow rate (Ib,/s), high thrust side 5.5 54 5.7 5.7 5.6 5.7 54 5.0 5.6 5.6 5.4 5.2
LOX flow rate (Ib/s), low thrust side 5.6 53 5.6 55 5.6 57 54 5.1 5.6 5.6 53 54
Fuel System
Tanks (psia) [PT0101] 5115 4890 5268 3362 4831 4326 4902 3786 4410 3399 4529 3639
Supply d/s of valve (psia) [PT0102] 593 16 593 591 592 589 593 589 566 578 593 589
100% venturi inlet P (psig) [PT0160] 457 5 458 457 459 458 459 452 437 452 457 454
100% venturi inlet T (F) [TT0160] 75 60 83 51 75 69 90 79 69 55 94 81
100% venturi ACd (in2) 0.3575 | 0.3575 0.3575 | 0.3575 | 0.3575 | 0.3575 | 0.3575 | 0.3575 0.3575 | 0.3575 | 0.3575 | 0.3575
100% venturi flow rate (Ib,,/s) 1.53 n/a 1.52 1.57 1.54 1.54 1.52 151 1.48 1.54 1.51 1.51
80% venturi inlet P (psig) [PT0163] 444 -10 439 439 446 447 451 447 430 449 485 481
80% venturi inlet T (F) [TT0163] 72 55 80 46 7 65 86 75 67 50 89 76
80% venturi ACd (in?) 0.2816 | 0.2816 0.2816 | 0.2816 | 0.2816 | 0.2816 | 0.2816 | 0.2816 0.2816 | 0.2816 | 0.2816 | 0.2816
80% venturi flow rate (Ib,,/s) 1.18 n/a 1.16 1.19 1.18 1.19 1.18 1.18 1.15 1.21 1.26 1.27
20% venturi inlet P (psig) [PT0164] 452 -3 461 458 465 462 465 465 444 458 462 462
20% venturiinlet T (F) [TT0164] 75 58 84 49 72 67 89 79 68 52 90 77
20% venturi ACd (in2) 0.07559 |0.07559 | 0.07559 |0.07559 |0.07559 |0.07559 [ 0.07559 |0.07559 | 0.07559 | 0.07559 | 0.07559 | 0.07559
20% venturi flow rate (Ib,/s) 0.32 n/a 0.32 0.33 0.33 0.33 0.33 0.33 0.32 0.33 0.32 0.33
Fuel flow rate (Ib,/s), high thrust side 1.53 n/a 1.52 1.57 1.54 1.54 1.52 1.51 1.48 1.54 1.51 1.51
Fuel flow rate (Ib,,/s), low thrust side 1.50 n/a 1.48 1.53 1.51 1.52 1.50 1.51 1.46 1.55 1.58 1.59
TTEB System
Supply P to engine (psia) [PT0651] 596 594 596 599 594 610 588 599 593 601 588 620
TTEB density (Ib,/ft3) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
Orifice to each thruster (in) 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026
flow rate to each thruster (Ib,/s) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
Water System
Tank P (psia) [PT0401] 781 781 77 77 779 77 769 77 780 777 773 772
Engine inlet P (psia) [PT0451] 624 677 619 626 617 643 605 610 607 602 606 602
Engine exit P (psia) [PT0453] 178 96 180 167 182 157 198 188 195 191 195 196
Engine AP (psi) 446 581 439 459 435 486 407 422 412 411 411 406
Engine inlet T (F) [TT0451] 45 44 56 54 54 52 61 63 59 57 78 7
Engine exit T (F) [TT0453] 38 35 47 48 47 44 54 56 51 51 70 70
min. initial engine exit T (F) [TT0453] n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
Engine AT (F) relative to TT0453 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
High Thrust Side Ramp
Upper T (F) [TT0455] 51 50 58 59 59 58 65 69 63 63 75 4l
Lower T (F) [TT0456] 50 50 59 58 59 57 66 68 63 63 75 75
Low Thrust Side Ramp
Upper T (F) [TT0457] 43 44 51 53 51 50 60 60 56 56 83 82
Lower T (F) [TT0458] 43 41 51 51 53 51 59 59 57 57 83 81
Total water flow rate (Ib,/s)*** 36.1 26.5 35.2 33.7 35.6 324 40.5 36.2 40.8 40.7 40.7 405

* GHe used in fuel/TTEB systems

** |gnition test - GHe used in fuel system

*** gst. w/engine AP when F/M inop

A LN2/GHe used for LOX/GH2




Table 10. Summary of LASRE system performance (Continued).

* GHe used in fuel/TTEB systems

Test # GRUN0020* GRUN0019*
Test Objective Gd. cold flow Gd. cold flow
Blow # 1 2 1 2
LOX System
ave. tank P (psia) [PT0302 & PT0301] 363 363 370
100% venturi inlet P (psia) [PT0360] 353 351 336
100% venturi inlet T (F) [TT0360] -265 assume -275
100% venturi ACd (in2) 0.0609 | 0.0609 | 0.0609 | 0.0609
100% venturi flow rate (Ib,/s) 5.6 5.8 5.6
80% venturi inlet P (psia) [PT0363] 340 343 334
80% venturi inlet T (F) [TT0363] -270 -273 -276
80% venturi throat P (psia) [PT0362] 25 38 22
80% venturi ACd (in2) 0.0473 | 0.0473 | 0.0473 | 0.0473
80% venturi flow rate (Ib,/s) 4.4 4.6 4.6
20% venturi inlet P (psia) [PT0364] 343 347 337
20% venturi inlet T (F) [TT0364] -267 -279 -270
20% venturi throat P (psia) [PT0361] 41 55 31
20% venturi ACd (in2) 0.01154 | 0.01154 | 0.01154 | 0.01154
20% venturi flow rate (Ib,/s) 1.1 11 1.1
LOX flow rate (Ib.,/s), high thrust side 5.6 5.8 5.6
LOX flow rate (Ib,/s), low thrust side 5.5 5.7 5.7
Fuel System
Tanks (psia) [PT0101] 5312 4713 3698
Supply d/s of valve (psia) [PT0102] 320 581 577
100% venturi inlet P (psig) [PT0160] 247 452 457
100% venturi inlet T (F) [TT0160] 113 97 80
100% venturi ACd (in2) 0.3575 | 0.3575 | 0.3575 | 0.3575
100% venturi flow rate (Ib,/s) 0.82 1.49 1.52
80% venturi inlet P (psig) [PT0163] 261 469 463
80% venturi inlet T (F) [TT0163] 107 100 83
80% venturi ACd (in2) 0.2816 | 0.2816 | 0.2816 | 0.2816
80% venturi flow rate (Ib,/s) 0.69 1.21 1.21
20% venturi inlet P (psig) [PT0164] 242 447 455
20% venturi inlet T (F) [TT0164] 111 97 83
20% venturi ACd (in2) 0.07559 | 0.07559 | 0.07559 | 0.07559
20% venturi flow rate (Ibm/s) 0.17 0.31 0.32
Fuel flow rate (Ib.,/s), high thrust side 0.82 1.49 1.52
Fuel flow rate (Ib.,/s), low thrust side 0.86 1.52 1.53
TTEB System
Supply P to engine (psia) [PT0651] 592 568 25
TTEB density (Ib,/ft3) n/a n/a n/a
Orifice to each thruster (in) 0.026 | 0.026 | 0.026 | 0.026
flow rate to each thruster (Ib/s) n/a n/a n/a
Water System
Tank P (psia) [PT0401] 781 774 766
Engine inlet P (psia) [PT0451] 579 574 556
Engine exit P (psia) [PT0453] 190 197 179
Engine AP (psi) 389 377 377
Engine inlet T (F) [TT0451] 87 91 92
Engine exit T (F) [TT0453] 78 83 84
min. initial engine exit T (F) [TT0453] n/a n/a n/a
Engine AT (F) relative to TT0453 n/a n/a n/a
High Thrust Side Ramp
Upper T (F) [TT0455] 89 90 89
Lower T (F) [TT0456] 89 100 99
Low Thrust Side Ramp
Upper T (F) [TT0457] 82 88 88
Lower T (F) [TT0458] 83 90 88
Total water flow rate (Ib,/s)*** 39.6 39.6 39.6

** |gnition test - GHe used in fuel system

* %k

est. w/engine AP when F/M inop

N LN2/GHe used for LOX/GH2
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Table 11. Summary of LASRE engine performance.

Test # GRUN0057* GRUN0056* GRUN0055* GRUN0054* GRUN0052* | FLT0050* | FLT0049**
Test date 9/18/98 9/11/98 8/19/98 8/14/98 7/30/98 7/23/98 4/15/98
Test Objective Flt. cold flow Fit. cold flow Fit. cold flow Flt. cold flow Fit. cold flow | Ft. cold flow | Fit. cold flow
Blow # 1 2 2 1 2 1 2 1 1 1
HIGH Thrust Side
TH#1 |LOX mfd P (psia) [PT0352] 195 191 203 216 216 208 203 198 200 192
LOX mfd T (F) [TT0352] -248 -249 -273 inop inop inop inop inop inop inop
Fuel mfd P (psig) [PT0152] 247 247 248 248 249 247 249 248 252 237
Fuel mfd T (F) [TT0152] 55 29 55 55 30 63 32 37 48 42
Pc (psig) [PT0001] 34 35 34 31 31 35 34 32 36 31
LOX side density (Ib,/ft") 62 63 43 43 43 43 43 43 63 63
LOX side flow rate (Ib./s) 1.50 1.48 1.46 1.45 1.45 1.43 1.40 1.43 1.47 1.50
LOX side ACd (in%) 0.024 0.023 0.027 0.025 0.025 0.026 0.026 0.026 0.022 0.023
Fuel side flow rate (Ib,/s) 0.41 0.41 0.41 0.41 0.41 0.40 0.41 0.41 0.39 0.40
Fuel side ACd (in’) 0168 | 0.164 0.167 0167 | 0164 | 0168 | 0.164 0.164 0.165 0.178
MR n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
actual C* (ft/s) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
C*, efficiency (%) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
TH#2 [LOX mfd P (psia) [PT0353] 196 192 196 219 216 207 203 195 201 191
LOX mfd T (F) [TT0353] -259 -259 -280 -277 -282 -278 -279 -280 -257 -255
Fuel mfd P (psig) [PT0153] 243 242 244 241 242 241 244 245 243 239
Pc (psig) [PT0002] 29 31 30 28 29 30 29 29 31 31
LOX side density (Ib,/ft") 64 63 43 43 43 43 43 43 63 63
LOX side flow rate (Ib,/s) 1.50 1.48 1.46 1.45 1.45 1.43 1.40 1.43 1.47 1.50
LOX side ACd (in%) 0.023 0.023 0.027 0.025 0.025 0.026 0.025 0.026 0.021 0.023
Fuel side flow rate (Ib,/s) 0.41 0.41 0.41 0.41 0.41 0.40 0.41 0.41 0.39 0.40
Fuel side ACd (in%) 0171 | 0.168 0170 0171 | 0169 | 0172 | 0.167 0.166 0171 0176
MR n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
actual C* (ft/s) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
C*, efficiency (%) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
TH#3 |LOX mfd P (psia) [PT0354] 194 193 198 219 213 206 204 197 200 194
LOX mfd T (F) [TT0354] -263 -265 -287 -287 -287 -281 -285 -286 -261 -261
Fuel mfd P (psig) [PT0154] 246 244 248 243 246 246 243 246 248 243
Pc (psig) [PT0003] 28 29 31 27 28 29 27 27 29 29
LOX side density (Ib,/ft") 65 63 43 45 45 45 45 45 63 63
LOX side flow rate (Ib./s) 1.50 1.48 1.46 1.45 1.45 1.43 1.40 1.43 1.47 1.50
LOX side ACd (in%) 0.023 0.023 0.027 0.024 0.025 0.025 0.025 0.026 0.021 0.022
Fuel side flow rate (Ib,/s) 0.41 0.4 0.4 0.4 0.41 040 0.4 0.4 039 040
Fuel side ACd (in) 0.168 0.166 0.167 0.170 0.166 0.169 0.168 0.165 0.168 0.174
MR n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
actual C* (ft/s) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
C*, efficiency (%) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
TH#4 |LOX mfd P (psia) [PT0355] 196 193 205 221 213 208 208 201 196 200
LOX mfd T (F) [TT0355] -263 -265 -288 -285 -286 -281 -282 -283 -262 -262
Fuel mfd P (psig) [PTO155] 250 247 251 249 250 250 247 250 255 242
Pc (psig) [PT0004] 31 30 32 28 29 31 27 30 31 29
LOX side density (Ib,/ft’) 65 63 44 44 44 44 44 44 63 63
LOX side flow rate (Ib,/s) 1.50 1.48 1.46 1.45 1.45 1.43 1.40 1.43 1.47 1.50
LOX side ACd (in”) 0023 | 0.023 0.026 0024 | 0025 | 0025 | 0024 0.026 0.022 0.022
Fuel side flow rate (Ib,/s) 0.41 0.41 0.41 0.41 0.41 0.40 0.41 0.41 0.39 0.40
Fuel side ACd (in) 0.166 0.164 0.165 0.166 0.164 0.166 0.165 0.163 0.163 0.174
MR n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
actual C* (ft/s) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
C*, efficiency (%) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
HIGH thrust side ave. Pc (psig) 30 31 31 29 29 31 29 30 32 30
HIGH thrust side ave. MR n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
HIGH thrust side ave. C*, eff. (%) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

* GHe used on fuel side  ** Ignition test
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Table 11. Summary of LASRE engine performance (Continued).

Test # GRUN0057* GRUN0056* GRUN0055 GRUN0054* GRUN0052* | FLT0050* | FLT0049**
Test date 9/18/98 9/11/98 8/19/98 8/14/98 7/30/98 7/23/98 4/15/98
Test Objective Flt. cold flow Fit. cold flow Fit. cold flow Flt. cold flow Fit. cold flow | Fit. cold flow| Fit. cold flow
Blow # 1 2 2 1 2 1 2 1 1 1
LOW Thrust Side
TH#5 |LOX mfd P (psia) [PT0356] 203 196 204 235 226 218 217 203 201 204
Fuel mfd P (psig) [PT0156] 246 246 248 247 253 251 246 244 252 245
Fuel mfd T (F) [TT0156] inop inop inop inop inop 72 inop 46 56 50
Pc (psig) [PT0005] 36 34 34 31 31 34 31 33 35 32
LOX side density (Ib,/ft’) 64 63 43 43 43 43 43 43 63 63
LOX side flow rate (Ib,/s) 1.45 1.43 1.38 1.35 1.40 1.33 1.35 1.35 1.46 1.43
LOX side ACd (in°) 0.022 0.022 0.025 0.022 0.024 0.023 0.023 0.025 0.022 0.021
Fuel side flow rate (Ib,/s) 0.4 0.41 0.41 0.40 0.4 040 0.41 0.41 0.40 0.40
Fuel side ACd (in%) 0170 | 0.168 0.169 0168 | 0163 | 0167 | 0.167 0.168 0.167 0.174
MR n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
actual C* (ft/s) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
C*, efficiency (%) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
TH#6 |LOX mfd P (psia) [PT0357] 205 194 201 232 229 217 211 203 200 196
LOX mfd T (F) [TT0357] -258 -257 -279 -278 -281 273 278 -278 -256 -253
Fuel mfd P (psig) [PT0157] 244 242 243 241 246 245 244 239 247 241
Pc (psig) [PT0006] 29 29 28 28 27 29 26 27 30 30
LOX side density (Ib,/ft’) 64 63 43 43 43 43 43 43 63 63
LOX side flow rate (Ib./s) 1.45 1.43 1.38 1.35 1.40 1.33 1.35 1.35 1.46 1.43
LOX side ACd (in°) 0.021 0.022 0.025 0.022 0.023 0.023 0.024 0.024 0.021 0.021
Fuel side flow rate (Ib,/s) 0.4 0.41 0.41 0.40 0.4 040 0.41 0.41 0.40 040
Fuel side ACd (in%) 0172 | 0170 0172 0172 | 0168 | 0171 | 0.168 0172 0171 0.176
MR n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
actual C* (ft/s) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
C*, efficiency (%) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
TH#7 |LOX mfd P (psia) [PT0358] 204 194 201 229 225 212 214 203 194 191
Fuel mfd P (psig) [PT0158] 240 235 236 234 238 242 240 236 242 237
Pc (psig) [PT0007] 28 26 26 27 29 27 27 27 28 29
LOX side density (Ib./ft) 64.5 63 44 44 44 44 44 44 63 63
LOX side flow rate (Ib./s) 1.45 1.43 1.38 1.35 1.40 1.33 1.35 1.35 1.46 1.43
LOX side ACd (in) 0.021 0.022 0.025 0.022 0.023 0.023 0.023 0.024 0.022 0.021
Fuel side flow rate (Ib,/s) 0.41 0.41 0.41 0.40 0.41 0.40 0.41 0.41 0.40 0.40
Fuel side AGd (in%) 0174 | 0175 0177 0177 | 0173 | 0473 | 0171 0.173 0.175 0.180
MR n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
actual C* (ft/s) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
C*, efficiency (%) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
TH#8 |LOX mfd P (psia) [PT0359] 209 201 211 233 230 215 213 210 204 198
LOX mfd T (F) [TT0359] -260 -263 -283 -280 -285 -278 -276 -278 -258 -258
Fuel mfd P (psig) [PT0159] 247 246 244 241 243 250 248 243 246 247
Pc (psig) [PT0008] 30 30 30 28 30 29 30 29 30 32
LOX side density (Ib,/ft’) 64.5 63 44 44 44 44 44 44 63 63
LOX side flow rate (Ib,/s) 1.45 1.43 1.38 1.35 1.40 1.33 1.35 1.35 1.46 1.43
LOX side ACd (in) 0.021 0.021 0.024 0.022 0.023 0.023 0.023 0.024 0.021 0.021
Fuel side flow rate (Ib,/s) 0.41 0.41 0.41 0.40 0.41 0.40 0.41 0.41 0.40 0.40
Fuel side ACd (in’) 0170 | 0.168 0171 0172 | 0170 | 0168 | 0.166 0.169 0.171 0172
MR n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
actual C* (ft/s) 31 31 31 31 31 31 31 31 31 31
C*, efficiency (%) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
LOW thrust side ave. Pc (psig) 31 30 29 28 29 30 28 29 31 31
LOW thrust side ave. MR n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
LOW thrust side ave. C*, eff. (%) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

* GHe used on fuel side  ** Ignition test
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Table 11. Summary of LASRE engine performance (Continued).

Test # FLT0048* | FLT00477 GRUNO0046~ GRUN0041~ | GRUN0038* | GRUN0037 | GRUNO0036 | GRUN0035*
Test date 3/19/98 3/4/98 2/12/98 12/9/97 9/24/97 4/30/97 4/23/97 4116/97
Test Objective Fit. cold flow| FIt. cold flow Fit. cold flow Fit. cold flow | Flt. cold flow| Gd. hot fire | Gd. hot fire | Gd. cold flow
Blow # 1 1 1 2 2 1 1 1 1
HIGH Thrust Side
TH#1 |LOX mfd P (psia) [PT0352] 193 198 201 210 225 202 309 306 204
LOX mfd T (F) [TT0352] inop inop inop inop -262 -271 -248 -246 -241
Fuel mfd P (psig) [PT0152] 243 244 245 238 239 241 307 305 220
Fuel mfd T (F) [TT0152] 53 43 49 54 73 35 18 10 50
Pc (psig) [PT0001] 32 29 29 32 27 28 217 218 34
LOX side density (Ib,/ft’) 43 43 43 43 39 41 62 62 60
LOX side flow rate (Ib./s) 1.45 1.45 1.43 1.45 1.40 1.45 1.48 1.50 1.48
LOX side ACd (in°) 0.026 0.026 0.026 0.026 0.025 0.027 0.032 0.033 0.023
Fuel side flow rate (Ib,/s) 0.40 0.39 0.41 0.40 0.40 0.41 0.26 0.26 0.39
Fuel side AGd (in%) 0.173 0.171 0.171 0.173 0.172 0.168 0.136 0.141 0.177
MR n/a n/a n/a n/a n/a n/a 57 5.7 n/a
actual C* (ft/s) n/a n/a n/a n/a n/a n/a 7509 7408 n/a
C*, efficiency (%) n/a n/a n/a n/a n/a n/a 98 97 n/a
TH#2 |LOX mfd P (psia) [PT0353] 199 199 200 212 227 200 307 307 201
LOX mfd T (F) [TT0353] -280 -282 -277 -275 -270 -282 -253 -256 -249
Fuel mfd P (psig) [PT0153] 238 237 242 233 230 235 304 304 215
Pc (psig) [PT0002] 29 27 28 29 29 27 210 210 29
LOX side density (Ib,/ft’ 43 43 43 42 41 44 63 64 62
LOX side flow rate (Ib,/s) 1.45 1.45 1.43 1.45 1.40 1.45 1.48 1.50 1.48
LOX side ACd (in%) 0.026 0.025 0.026 | 0.026 0.024 0.026 0.031 0.031 0.022
Fuel side flow rate (Ib,/s) 0.40 0.39 0.41 0.40 0.40 0.41 0.26 0.26 0.39
Fuel side AGd (in%) 0.176 0.176 0.173 0.176 0.179 0.172 0.135 0.137 0.180
MR n/a n/a n/a n/a n/a n/a 57 5.7 n/a
actual C* (ft/s) n/a n/a n/a n/a n/a n/a 7277 7148 n/a
C*, efficiency (%) n/a n/a n/a n/a n/a n/a 95 93 n/a
TH#3 |LOX mfd P (psia) [PT0354] 199 196 200 212 231 199 311 312 205
LOX mfd T (F) [TT0354] -287 -289 -287 -285 274 -289 -262 -264 -261
Fuel mfd P (psig) [PT0154] 240 236 239 232 231 238 305 303 216
Pc (psig) [PT0003] 30 29 29 31 28 28 209 210 30
LOX side density (Ib,/ft’ 45 45 45 44 42 45 65.1 65.5 65
LOX side flow rate (Ib./s) 1.45 1.45 1.43 1.45 1.40 1.45 1.48 1.50 1.48
LOX side ACd (in?) 0.025 0.025 0.025 0.025 0.024 0.026 0.029 0.030 0.022
Fuel side flow rate (Ib,/s) 0.40 039 0.4 040 0.40 0.41 0.26 0.26 0.39
Fuel side ACd (in?) 0.175 0.176 0.175 0.177 0.178 0.170 0.135 0.139 0.180
MR n/a n/a n/a n/a n/a n/a 57 5.7 n/a
actual C* (ft/s) n/a n/a n/a n/a n/a n/a 7244 7148 n/a
C*, efficiency (%) n/a n/a n/a n/a n/a n/a 95 93 n/a
TH#4 |LOX mfd P (psia) [PT0355] 201 203 201 214 238 201 321 319 211
LOX mfd T (F) [TT0355] -285 -285 -285 -281 -275 -287 -262 -263 -256
Fuel mfd P (psig) [PT0155] 243 243 242 238 238 240 308 308 221
Pc (psig) [PT0004] 30 29 29 31 31 30 214 212 30
LOX side density (Ib,/ft’ 44 44 44 44 42 45 65.1 65.3 64
LOX side flow rate (Ib/s) 1.45 1.45 1.43 1.45 1.40 1.45 1.48 1.50 1.48
LOX side ACd (in?) 0.025 0.025 0.026 0.025 0.023 0.026 0.029 0.029 0.021
Fuel side flow rate (Ib,/s) 0.40 0.39 0.41 0.40 0.40 0.41 0.26 0.26 0.39
Fuel side ACd (in?) 0.173 0.172 0.173 0.173 0.173 0.169 0.134 0.135 0.176
MR n/a n/a n/a n/a n/a n/a 57 5.7 n/a
actual C* (ft/s) n/a n/a n/a n/a n/a n/a 7410 7213 n/a
C*, efficiency (%) n/a n/a n/a n/a n/a n/a 97 94 n/a
HIGH thrust side ave. Pc (psig) 30 28 29 31 29 28 212 213 31
HIGH thrust side ave. MR n/a n/a n/a n/a n/a n/a 57 5.7 n/a
HIGH thrust side ave. C*, eff. (%) n/a n/a n/a n/a n/a n/a 96 94 n/a

* GHe used on fuel side  ** Ignition test

66

*k

* instrumentation questionable

ALN2/GHe used for LOX/GH2




Table 11. Summary of LASRE engine performance (Continued).

Test # FLT0048" | FLT00477 GRUN0046~ GRUNO0041~ | GRUN0038” | GRUN0D037 | GRUN0036 | GRUN0DO35*
Test date 3/19/98 3/4/98 2/12/98 12/9/97 9/24/97 4/30/97 4/23/97 4/16/97
Test Objective Fit. cold flow | Fit. cold flow Fit. cold flow Fit. cold flow | Fit. cold flow| Gd. hot fire | Gd. hot fire | Gd. cold flow
Blow # 1 1 1 2 2 1 1 1 1
LOW Thrust Side
TH#5 |LOX mfd P (psia) [PT0356] 210 206 206 212 225 204 303 297 209
Fuel mfd P (psig) [PT0156] 254 246 250 249 244 252 n/a n/a n/a
Fuel mfd T (F) [TT0156] 60 53 59 63 79 45 31 23 59
Pc (psig) [PT0005] 33 33 32 32 31 31 205 205 33
LOX side density (Ib,/ft’) 43 43 43 42 40 43 63 63 62
LOX side flow rate (Ib,/s) 1.38 1.38 1.35 1.38 1.33 1.38 1.40 1.43 1.40
LOX side ACd (in%) 0.024 0.024 0.024 0.025 0.023 0.025 0.029 0.031 0.021
Fuel side flow rate (Ib,/s) 0.40 0.40 0.41 0.4 0.40 0.41 0.26 0.27 0.39
Fuel side ACd (in%) 0.169 0173 0168 | 0.168 0171 0.164 n/a n/a n/a
MR n/a n/a n/a n/a n/a n/a 54 54 n/a
actual C* (ft/s) n/a n/a n/a n/a n/a n/a 7420 7288 n/a
C*, efficiency (%) n/a n/a n/a n/a n/a n/a 96 94 n/a
TH#6 |LOX mfd P (psia) [PT0357] 200 208 209 216 220 204 302 299 204
LOX mfd T (F) [TT0357] -280 -281 277 -274 -267 -278 -250 -253 -248
Fuel mfd P (psig) [PT0157] 247 244 244 243 237 245 298 296 227
Pc (psig) [PT0006] 28 28 26 27 27 27 200 199 29
LOX side density (Ib/ft) 43 43 43 42 40 43 63 63 62
LOX side flow rate (Ib,/s) 1.38 1.38 1.35 1.38 1.33 1.38 1.40 1.43 1.40
LOX side ACd (in?) 0.024 0.024 0.024 0.024 0.023 0.025 0.028 0.029 0.021
Fuel side flow rate (Ib./s) 0.40 0.40 0.41 0.41 0.40 0.41 0.26 0.27 0.39
Fuel side ACd (in%) 0.174 0.175 0.172 0.172 0.175 0.169 0.140 0.142 0.174
MR n/a n/a n/a n/a n/a n/a 5.4 5.4 n/a
actual C* (ft/s) n/a n/a n/a n/a n/a n/a 7247 7085 n/a
C*, efficiency (%) n/a n/a n/a n/a n/a n/a 94 91 n/a
TH#7 |LOX mfd P (psia) [PT0358] 199 203 206 213 228 203 300 297 206
Fuel mfd P (psig) [PT0158] 240 237 236 235 233 241 296 294 223
Pc (psig) [PT0007] 27 27 27 26 26 26 198 197 31
LOX side density (Ib,/ft") 44 44 44 43 42 43 64 64 63
LOX side flow rate (Ib,/s) 1.38 1.38 1.35 1.38 1.33 1.38 1.40 1.43 1.40
LOX side ACd (in’) 0.024 0.024 0.024 0.024 0.022 0.025 0.028 0.029 0.021
Fuel side flow rate (Ib,/s) 0.40 040 0.41 0.4 0.40 0.41 0.26 0.27 0.39
Fuel side ACd (in%) 0178 0179 0177 | 0178 0178 0172 0.140 0.143 0177
MR n/a n/a n/a n/a n/a n/a 5.4 5.4 n/a
actual C* (ft/s) n/a n/a n/a n/a n/a n/a 7178 7017 n/a
C*, efficiency (%) n/a n/a n/a n/a n/a n/a 93 91 n/a
TH#8 |LOX mfd P (psia) [PT0359] 209 209 210 221 235 212 305 298 205
LOX mfd T (F) [TT0359] -283 -279 -281 -277 -273 -283 -256 -258 -253
Fuel mfd P (psig) [PT0159] 244 245 247 244 241 248 301 300 229
Pc (psig) [PT0008] 29 31 31 31 29 30 202 201 33
LOX side density (Ib./ft’) 44 44 44 43 42 44 64 64 63
LOX side flow rate (Ib./s) 1.38 1.38 1.35 1.38 1.33 1.38 1.40 1.43 1.40
LOX side ACd (in’) 0.023 0.023 0.024 0.024 0.022 0.024 0.028 0.029 0.021
Fuel side flow rate (Ib./s) 0.40 0.40 0.41 0.41 0.40 0.41 0.26 0.27 0.39
Fuel side ACd (in) 0.175 0.173 0.170 0.172 0.173 0.167 0.139 0.140 0.172
MR n/a n/a n/a n/a n/a n/a 54 54 n/a
actual C* (ft/s) 31 31 n/a n/a n/a n/a 7316 7153 n/a
C*, efficiency (%) n/a n/a n/a n/a n/a n/a 94 92 n/a
LOW thrust side ave. Pc (psig) 29 30 29 29 28 29 201 201 32
LOW thrust side ave. MR n/a n/a n/a n/a n/a n/a 54 54 n/a
LOW thrust side ave. C*, eff. (%) n/a n/a n/a n/a n/a n/a 94 92 n/a

* GHe used on fuel side  ** Ignition test
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Table 11. Summary of LASRE engine performance (Continued).

Test # GRUNO0033** GRUNO0032** GRUNO0031** GRUNO0030* | GRUND029* | GRUN0028*
Test date 2/6/97 1/31/97 1/23/97 1/18/97 12/17/96 12/11/96
Test Objective Ignition test Ignition test Ignition test Gd. cold flow| Gd. cold flow| Gd. cold flow
Blow # 1-ign 1-main 2-ign 2-main 1-ign 1-main 1-ign 1-main 1 1 1
HIGH Thrust Side
TH#1 |LOX mfd P (psia) [PT0352] 261 201 241 193 249 235 261 193 196 201 195
LOX mfd T (F) [TT0352] -230 -246 -224 -243 -229 -219 -232 -248 -248 -249 -250
Fuel mfd P (psig) [PT0152] 31 230 31 237 7 210 28 212 197 195 198
Fuel mfd T (F) [TT0152] 133 58 334 49 63 64 177 47 40 51 65
Pc (psig) [PT0001] 34 36 37 32 13 21 32 35 31 32 33
LOX side density (Ib/ft’) 58 62 57 61 n/a n/a 58 62 62 62 62
LOX side flow rate (Ib,/s) 1.45 1.48 1.43 1.45 0.75 1.00 1.45 1.48 1.48 1.48 1.50
LOX side ACd (in’) n/a 0.023 n/a 0.023 n/a n/a n/a 0.023 0.023 0.023 0.023
Fuel side flow rate (Ib./s) n/a 0.39 n/a 0.39 n/a 0.38 n/a 0.39 0.40 0.39 0.39
Fuel side ACd (in%) n/a 0.173 n/a 0.167 n/a 0.186 n/a 0.185 0.200 0.201 0.202
MR n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
actual C* (ft/s) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
C*, efficiency (%) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
TH#2 |LOX mfd P (psia) [PT0353] 260 194 243 194 249 231 257 195 189 198 194
LOX mfd T (F) [TT0353] -233 -255 -233 -253 -229 -214 -232 -255 -253 -256 -256
Fuel mfd P (psig) [PT0153] 20 229 26 230 1 202 26 206 188 192 194
Pc (psig) [PT0002] 35 33 36 30 1 16 30 30 29 30 30
LOX side density (Ib,/ft) 58 63 58 63 n/a n/a 58 63 63 63 64
LOX side flow rate (Ib,/s) 1.45 1.48 1.43 1.45 0.75 1.00 1.45 1.48 1.48 1.48 1.50
LOX side ACd (in%) n/a 0.023 n/a 0.022 n/a n/a n/a 0.023 0.023 0.022 0.023
Fuel side flow rate (Ib./s) n/a 0.39 n/a 0.39 n/a 0.38 n/a 0.39 0.40 0.39 0.39
Fuel side ACd (in%) n/a 0.173 n/a 0.172 n/a 0.193 n/a 0.190 0.209 0.204 0.206
MR n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
actual C* (ft/s) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
C*, efficiency (%) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
TH#3 |LOX mfd P (psia) [PT0354] 264 196 245 195 241 220 252 199 199 206 201
LOX mfd T (F) [TT0354] -239 -262 -244 -259 -239 -240 -238 -263 -262 -263 -262
Fuel mfd P (psig) [PT0154] 30 225 30 231 8 207 27 209 192 190 190
Pc (psig) [PT0003] 33 31 36 33 10 14 32 29 31 29 31
LOX side density (Ib,/ft’) 60 65 61 64 n/a n/a 60 65 65 65 65
LOX side flow rate (Ib,/s) 1.45 1.48 1.43 1.45 0.75 1.00 1.45 1.48 1.48 1.48 1.50
LOX side ACd (in%) n/a 0.022 | 0020 | 0.022 n/a n/a n/a 0.022 0.022 0.021 0.022
Fuel side flow rate (Ib./s) n/a 0.39 n/a 0.39 n/a 0.38 n/a 0.39 0.40 0.39 0.39
Fuel side AGd (in%) n/a 0.176 n/a 0171 n/a 0.189 n/a 0.187 0.205 0.206 0.210
MR n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
actual C* (ft/s) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
C*, efficiency (%) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
TH#4 |LOX mfd P (psia) [PT0355] 271 203 248 203 265 243 268 209 205 205 198
LOX mfd T (F) [TT0355] -242 -261 -248 -263 -242 -240 -241 -265 -260 -264 -264
Fuel mfd P (psig) [PT0155] 31 235 31 238 1 213 31 212 194 195 194
Pc (psig) [PT0004] 34 31 36 29 7 13 33 30 30 28 31
LOX side density (Ib,/ft) 61 65 62 65 n/a n/a 60 65 64.5 65 65
LOX side flow rate (Ib,/s) 1.45 1.48 1.43 1.45 0.75 1.00 1.45 1.48 1.48 1.48 1.50
LOX side ACd (in%) 0.019 | 0022 | 0019 | 0021 n/a n/a 0.019 | 0.021 0.022 0.021 0.023
Fuel side flow rate (Ib,/s) n/a 0.39 n/a 0.39 n/a 0.38 n/a 0.39 0.40 0.39 0.39
Fuel side ACd (in?) n/a 0.169 n/a 0.167 n/a 0.184 n/a 0.185 0.203 0.201 0.206
MR n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
actual C* (ft/s) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
C*, efficiency (%) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
HIGH thrust side ave. Pc (psig) 34 33 36 31 10 16 32 31 30 30 31
HIGH thrust side ave. MR n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
HIGH thrust side ave. C*, eff. (%) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

* GHe used on fuel side
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Table 11. Summary of LASRE engine performance (Continued).

Test # GRUNO0033** GRUN0032** GRUN0031** GRUN0030* | GRUND029* | GRUN0D028*
Test date 2/6/97 1/31/97 1/23/97 1/18/97 12/17/96 12/11/96
Test Objective Ignition test Ignition test Ignition test Gd. cold flow| Gd. cold flow| Gd. cold flow
Blow # 1-ign 1-main 2-ign 2-main 1-ign 1-main 1-ign 1-main 1 1 1
LOW Thrust Side
TH#5 |LOX mfd P (psia) [PT0356] 228 203 229 200 286 244 228 198 203 201 197
Fuel mfd P (psig) [PT0156] 29 235 33 239 7 230 29 213 206 207 207
Fuel mfd T (F) [TT0156] 63 68 56 58 203 75 59 55 50 53 67
Pc (psig) [PT0005] 13 33 29 33 9 17 29 31 31 29 31
LOX side density (Ib,/ft*) 59 63 60 62 n/a n/a 60 64 63 63 63
LOX side flow rate (Ib,/s) 1.43 1.43 1.35 1.40 0.78 0.91 1.38 1.43 1.43 1.40 1.43
LOX side AGd (in?) n/a 0.022 0.019 0.022 n/a n/a n/a 0.022 0.021 0.021 0.022
Fuel side flow rate (Ib./s) n/a 0.40 n/a 0.40 n/a 0.39 n/a 0.39 0.40 0.40 0.39
Fuel side ACd (in?) n/a 0.173 n/a 0.170 n/a 0.175 n/a 0.187 0.195 0.193 0.191
MR n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
actual C* (ft/s) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
C*, efficiency (%) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
TH#6 |LOX mfd P (psia) [PT0357] 228 202 225 200 274 244 223 204 203 203 195
LOX mfd T (F) [TT0357] -237 -252 -240 -250 -233 -239 -238 -256 -252 -253 -255
Fuel mfd P (psig) [PT0157] 25 226 30 234 10 215 28 205 199 199 199
Pc (psig) [PT0006] 30 29 28 27 9 13 30 28 27 26 29
LOX side density (Ib,/ft*) 59 63 60 62 n/a n/a 60 64 63 63 63
LOX side flow rate (Ib,/s) 1.43 1.43 1.35 1.40 0.78 0.91 1.38 1.43 1.43 1.40 1.43
LOX side ACd (in?) n/a 0.021 0019 | 0.021 n/a n/a n/a 0.021 0.021 0.021 0.022
Fuel side flow rate (Ib,/s) n/a 0.40 n/a 0.40 n/a 0.39 n/a 0.39 0.40 0.40 0.39
Fuel side ACd (in?) n/a 0.180 n/a 0.173 n/a 0.187 n/a 0.194 0.201 0.200 0.198
MR n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
actual C* (ft/s) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
C*, efficiency (%) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
TH#7 |LOX mfd P (psia) [PT0358] 229 201 230 196 267 228 216 203 199 202 194
Fuel mfd P (psig) [PT0158] 21 225 20 225 3 208 25 199 195 197 192
Pc (psig) [PT0007] 31 3 32 32 11 14 30 29 30 29 33
LOX side density (Ib,/ft’) 61 64.5 61 63 n/a n/a 62 64.5 64 64.5 64.5
LOX side flow rate (Ib./s) 1.43 1.43 1.35 1.40 078 0.91 1.38 1.43 1.43 1.40 1.43
LOX side ACd (in?) n/a 0.021 0.019 0.022 n/a n/a n/a 0.021 0.021 0.021 0.022
Fuel side flow rate (Ib,/s) n/a 0.40 n/a 0.40 n/a 0.39 n/a 0.39 0.40 0.40 0.39
Fuel side ACd (in%) n/a 0.180 n/a 0179 n/a 0.193 n/a 0.199 0.205 0.202 0.205
MR n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
actual C* (ft/s) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
C*, efficiency (%) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
TH#8 |LOX mfd P (psia) [PT0359] 234 203 235 197 274 241 229 208 204 205 200
LOX mfd T (F) [TT0359] -245 -260 -244 -255 -237 -238 -247 -260 -258 -260 -260
Fuel mfd P (psig) [PT0159] 28 229 35 238 8 218 31 207 198 199 195
Pc (psig) [PT0008] 31 3 33 31 9 16 3 29 32 29 32
LOX side density (Ib,/ft’) 61 64.5 61 63 n/a n/a 62 64.5 64 64.5 64.5
LOX side flow rate (Ib,/s) 1.43 1.43 1.35 1.40 0.78 0.91 1.38 1.43 1.43 1.40 1.43
LOX side ACd (in?) 0.020 0.021 0.019 0.021 n/a n/a 0.019 0.021 0.021 0.021 0.021
Fuel side flow rate (Ib,/s) n/a 0.40 n/a 0.40 n/a 0.39 n/a 0.39 0.40 0.40 0.39
Fuel side ACd (in%) n/a 0177 n/a 0.170 n/a 0.184 n/a 0.192 0.202 0.200 0.202
MR n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
actual C* (ft/s) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
C*, efficiency (%) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
LOW thrust side ave. Pc (psig) 26 31 31 31 10 15 30 29 30 28 31
LOW thrust side ave. MR n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
LOW thrust side ave. C*, eff. (%) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

* GHe used on fuel side  ** Ignition test

*** instrumentation questionable

ALN2/GHe used for LOX/GH2

69



Table 11. Summary of LASRE engine performance (Continued).

Test # GRUN0027* GRUN0026* GRUN0025* GRUN0024* GRUN0023* GRUNO0022*
Test date 12/3/96 11/22/96 11/15/96 11/9/96 10/25/96 10/12/96
Test Objective Gd. cold flow Gd. cold flow Gd. cold flow Gd. cold flow Gd. cold flow Gd. cold flow
Blow # 1 2 1 2 1 2 1 2" 1 2 1 2
HIGH Thrust Side
TH#1 |LOX mfd P (psia) [PT0352] 189 200 186 178 186 181 185 203 197 197 219 216
LOX mfd T (F) [TT0352] -256 -240 -254 -260 -253 -258 -254 -242 -249 -251 -243 -242
Fuel mfd P (psig) [PT0152] 196 3 193 197 198 194 198 195 189 194 197 196
Fuel mfd T (F) [TT0152] 72 40 75 38 68 62 85 al 61 60 83 65
Pc (psig) [PT0001] 32 4 33 33 32 33 32 30 31 32 33 33
LOX side density (Ib,/ft’) 64 60 63 64.5 63 64 63 60 62 63 60 60
LOX side flow rate (Ib./s) 1.38 1.35 1.43 1.43 1.40 1.43 1.35 1.25 1.40 1.40 1.35 1.30
LOX side ACd (in%) 0.022 0.019 0.023 0.023 0.022 0.023 0.022 0.019 0.022 0.022 0.020 0.019
Fuel side flow rate (lb,/s) 0.38 0.38 0.39 0.38 0.39 0.38 0.38 0.37 0.39 0.38 0.38
Fuel side ACd (in%) 0.199 0.202 0.196 0.198 0.201 0.198 0.197 0.197 0.201 0.197 0.196
MR n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
actual C* (ft/s) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
C*, efficiency (%) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
TH#2 |LOX mfd P (psia) [PT0353] 192 201 186 182 183 178 189 206 198 190 216 212
LOX mfd T (F) [TT0353] -250 -239 -250 -256 -250 -254 -248 -238 -245 -245 -235 -237
Fuel mfd P (psig) [PT0153] 192 2 184 193 194 190 191 192 184 191 194 193
Pc (psig) [PT0002] 29 4 30 30 30 30 30 29 28 32 30 30
LOX side density (Ib,/ft*) 62 60 62 64 62 63 62 60 61 61 59 59
LOX side flow rate (Ib,/s) 1.38 1.35 1.43 1.43 1.40 1.43 1.35 1.25 1.40 1.40 1.35 1.30
LOX side ACd (in%) 0.021 | 0019 | 0023 | 0023 | 0023 | 0023 | 0021 | 0019 | 0022 | 0022 n/a n/a
Fuel side flow rate (Ib,/s) 0.38 0.38 0.39 0.38 0.39 0.38 0.38 0.37 0.39 0.38 0.38
Fuel side ACd (in%) 0.203 0.211 0.200 0.201 0.205 0.205 0.200 0.201 0.204 0.200 0.199
MR n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
actual C* (ft/s) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
C*, efficiency (%) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
TH#3 |LOX mfd P (psia) [PT0354] 189 205 189 185 196 185 195 212 200 201 220 219
LOX mfd T (F) [TT0354] -251 -242 -251 -256 -252 -249 -250 -241 -248 -250 -241 -242
Fuel mfd P (psig) [PT0154] 185 3 184 184 190 188 191 186 180 186 191 190
Pc (psig) [PT0003] 29 1 30 30 31 29 31 32 28 28 31 31
LOX side density (Ib,/ft*) 63 60 63 64 63 62 62 60 62 62 60 61
LOX side flow rate (Ib,/s) 1.38 1.35 1.43 1.43 1.40 1.43 1.35 1.25 1.40 1.40 1.35 1.30
LOX side ACd (in%) 0.022 | 0019 | 0022 | 0023 [ 002 | 0023 | 0021 | 0019 | 0021 | 0021 | 0020 | 0019
Fuel side flow rate (Ib,/s) 0.38 0.38 0.39 0.38 0.39 0.38 0.38 0.37 0.39 0.38 0.38
Fuel side ACd (in%) 0.210 0.211 0.209 0.205 0.207 0.205 0.206 0.206 0.209 0.203 0.201
MR n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
actual C* (ft/s) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
C*, efficiency (%) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
TH#4 |LOX mfd P (psia) [PT0355] 198 207 192 182 195 187 192 212 203 204 223 221
LOX mfd T (F) [TT0355] -246 -240 -249 -250 -247 -251 -246 -234 -245 -247 -233 -235
Fuel mfd P (psig) [PT0155] 196 5 195 198 197 195 194 195 187 194 196 196
Pc (psig) [PT0004] 30 0 30 31 29 29 30 29 30 30 31 31
LOX side density (Ib/ft’) 61 60 62 62 62 63 61 59 61 62 58 59
LOX side flow rate (Ib,/s) 1.38 1.35 143 1.43 1.40 1.43 1.35 1.25 1.40 1.40 1.35 1.30
LOX side ACd (in?) 0.021 0.019 0.022 0.023 0.022 0.022 0.021 n/a 0.021 0.021 n/a n/a
Fuel side flow rate (Ib/s) 0.38 038 039 0.38 0.39 0.38 038 0.37 0.39 0.38 0.38
Fuel side ACd (in”) 0.199 0200 | 019 | 0199 | 0200 | 0202 | 0197 | 0198 | 0201 | 0198 [ 0.19
MR n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
actual C* (ft/s) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
C*, efficiency (%) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
HIGH thrust side ave. Pc (psig) 30 2 31 31 31 30 31 30 29 31 31 31
HIGH thrust side ave. MR n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
HIGH thrust side ave. C*, eff. (%) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

* GHe used on fuel side  ** Ignition test *** instrumentation questionable  ALN2/GHe used for LOX/GH2
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Table 11. Summary of LASRE engine performance (Continued).

Test # GRUNO0027* GRUNO0026* GRUN0025* GRUNO0024* GRUNO0023* GRUNO0022*
Test date 12/3/96 11/22/96 11/15/96 11/9/96 10/25/96 10/12/96
Test Objective Gd. cold flow Gd. cold flow Gd. cold flow Gd. cold flow Gd. cold flow Gd. cold flow
Blow # 1 2 1 2 1 2 1 2" 1 2 1 2
LOW Thrust Side
TH#5 |LOX mfd P (psia) [PT0356] 193 192 196 190 195 192 190 209 209 207 220 222
Fuel mfd P (psig) [PT0156] 204 6 201 207 200 202 207 210 196 200 208 203
Fuel mfd T (F) [TT0156] 90 56 95 51 82 79 98 85 75 75 100 80
Pc (psig) [PT0005] 32 1 32 30 30 29 32 34 31 32 32 32
LOX side density (Ib,/ft") 62 61 62 63 62 63 61 59 61 61 59 59
LOX side flow rate (Ib,/s) 1.40 1.33 1.40 1.38 1.40 1.43 1.35 1.28 1.40 1.40 1.33 1.35
LOX side ACd (in?) 0.022 0.019 0.022 0.022 0.022 0.022 0.022 n/a 0.021 0.021 n/a n/a
Fuel side flow rate (Ib,/s) 0.37 0.37 0.38 0.38 0.38 0.38 0.38 0.37 0.39 0.40 0.40
Fuel side ACd (in*) 0.191 0.192 0.185 0.195 0.194 0.191 0.186 0.191 0.198 0.200 0.202
MR n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
actual C* (ft/s) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
C*, efficiency (%) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
TH#6 |LOX mfd P (psia) [PT0357] 190 194 192 190 185 186 193 205 205 203 217 218
LOX mfd T (F) [TT0357] -247 -243 -247 -252 -249 -251 -246 -236 -244 -246 -237 -237
Fuel mfd P (psig) [PT0157] 190 5 194 197 201 193 196 197 189 193 197 197
Pc (psig) [PT0006] 28 0 29 31 27 28 31 30 27 27 29 29
LOX side density (Ib,/ft’) 62 61 62 63 62 63 61 59 61 61 59 59
LOX side flow rate (Ib,/s) 1.40 1.33 1.40 1.38 1.40 1.43 1.35 1.28 1.40 1.40 1.33 1.35
LOX side ACd (in?) 0.022 0.019 0.022 0.022 0.022 0.022 0.021 n/a 0.021 0.021 n/a n/a
Fuel side flow rate (Ib,/s) 0.37 0.37 0.38 0.38 0.38 0.38 0.38 0.37 0.39 0.40 0.40
Fuel side ACd (in%) 0.204 0.199 0.194 0.194 0.202 0.201 0.198 0.198 0.205 0.211 0.208
MR n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
actual C* (ft/s) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
C*, efficiency (%) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
TH#7 |LOX mfd P (psia) [PT0358] 187 188 181 179 182 179 189 205 199 198 215 213
Fuel mfd P (psig) [PT0158] 190 1 194 191 192 194 195 191 184 191 192 194
Pc (psig) [PT0007] 31 2 31 28 29 28 31 29 31 31 30 30
LOX side density (Ib,/ft") 61 61 61 63 62 63 61 59 61 61 59 59
LOX side flow rate (Ib,/s) 1.40 1.33 1.40 1.38 1.40 1.43 1.35 1.28 1.40 1.40 1.33 1.35
LOX side ACd (in%) 0023 | 0019 [ 0023 | 0.022 0023 | 0.023 | 0.022 n/a 0022 | 0.022 n/a n/a
Fuel side flow rate (Ib,/s) 0.37 0.37 0.38 0.38 0.38 0.38 0.38 0.37 0.39 0.40 0.40
Fuel side ACd (in°) 0.204 0.199 0.199 0.203 0.201 0.201 0.204 0.202 0.207 0.216 0.211
MR n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
actual C* (ft/s) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
C*, efficiency (%) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
TH#8 |LOX mfd P (psia) [PT0359] 190 196 193 193 185 187 193 210 209 206 223 221
LOX mfd T (F) [TT0359] -245 -244 -246 -252 =247 -251 -243 -234 -242 -245 -234 -237
Fuel mfd P (psig) [PT0159] 197 4 194 202 202 199 198 197 188 202 198 199
Pc (psig) [PT0008] 31 2 31 32 30 30 33 34 31 33 34 33
LOX side density (Ib,/ft") 61 61 61 63 62 63 61 59 61 61 59 59
LOX side flow rate (Ib,/s) 1.40 1.33 1.40 1.38 1.40 1.43 1.35 1.28 1.40 1.40 1.33 1.35
LOX side ACd (in?) 0.022 0.019 0.022 0.021 0.022 0.023 0.021 n/a 0.021 0.021 n/a n/a
Fuel side flow rate (Ib,/s) 0.37 0.37 0.38 0.38 0.38 0.38 0.38 0.37 0.39 0.40 0.40
Fuel side ACd (in®) 0.197 0.199 0.189 0.193 0.197 0.199 0.198 0.199 0.196 0.210 0.206
MR n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
actual C* (ft/s) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
C*, efficiency (%) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
LOW thrust side ave. Pc (psig) 31 1 31 30 29 29 32 32 30 31 31 31
LOW thrust side ave. MR n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
LOW thrust side ave. C*, eff. (%) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

* GHe used on fuel side

** |gnition test

Hk

* instrumentation questionable

ALN2/GHe used for LOX/GH2
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Table 11. Summary of LASRE engine performance (Continued).

Test # GRUNO0020* GRUNO0019*
Test date 9/1/96 7/26/96
Test Objective Gd. cold flow Gd. cold flow
Blow # 1 2 1 2
HIGH Thrust Side
TH#1  |LOX mfd P (psia) [PT0352] 185 206 178
LOX mfd T (F) [TT0352] -254 -250 -259
Fuel mfd P (psig) [PT0152] 101 194 192
Fuel mfd T (F) [TT0152] n/a 102 83
Pc (psig) [PT0001] 21 35 36
LOX side density (Ib,/ft%) 63 62 64
LOX side flow rate (Ib,/s) 1.40 1.45 1.40
LOX side ACd (in?) 0.022 0.022 0.023
Fuel side flow rate (Ib,/s) 0.21 0.37 0.38
Fuel side ACd (in%) n/a 0.201 0.204
MR n/a n/a n/a n/a
actual C* (ft/s) n/a n/a n/a n/a
C*, efficiency (%) n/a n/a n/a n/a
TH#2 |LOX mfd P (psia) [PT0353] 188 200 181
LOX mfd T (F) [TT0353] -250 -282*** | -284***
Fuel mfd P (psig) [PT0153] 97 183 182
Pc (psig) [PT0002] 15 28 29
LOX side density (Ib,/ft%) 62 69 69
LOX side flow rate (Ib,/s) 1.40 1.45 1.40
LOX side ACd (in?) 0.021 n/a n/a
Fuel side flow rate (Ib,/s) 0.21 0.37 0.38
Fuel side ACd (in?) n/a 0.212 0.215
MR n/a n/a n/a n/a
actual C* (ft/s) n/a n/a n/a n/a
C*, efficiency (%) n/a n/a n/a n/a
TH#3 |LOX mfd P (psia) [PT0354] 190 205 185
LOX mfd T (F) [TT0354] -255 -282 -289***
Fuel mfd P (psig) [PT0154] 87 190 193
Pc (psig) [PT0003] 17 31 31
LOX side density (Ib,/ft*) 63 69 70
LOX side flow rate (Ib,/s) 1.40 1.45 1.40
LOX side ACd (in?) 0.021 0.021 n/a
Fuel side flow rate (Ib,/s) 0.21 0.37 0.38
Fuel side ACd (in?) n/a 0.205 0.203
MR n/a n/a n/a n/a
actual C* (ft/s) n/a n/a n/a n/a
C*, efficiency (%) n/a n/a n/a n/a
TH#4 |LOX mfd P (psia) [PT0355] 163*** 173*** | 154***
LOX mfd T (F) [TT0355] -247 -266 -273
Fuel mfd P (psig) [PT0155] 98 194 194
Pc (psig) [PT0004] 18 33 28
LOX side density (Ib,/ft%) 62 66 67
LOX side flow rate (Ib,/s) 1.40 1.45 1.40
LOX side ACd (in?) n/a n/a n/a
Fuel side flow rate (Ib,/s) 0.21 0.37 0.38
Fuel side ACd (in?) n/a 0.201 0.202
MR n/a n/a n/a n/a
actual C* (ft/s) n/a n/a n/a n/a
C*, efficiency (%) n/a n/a n/a n/a
HIGH thrust side ave. Pc (psig) 18 - 32 31
HIGH thrust side ave. MR n/a n/a n/a n/a
HIGH thrust side ave. C*, eff. (%) n/a n/a n/a n/a

* GHe used on fuel side  ** Ignition test

*k

* instrumentation questionable

ALN2/GHe used for LOX/GH2



Table 11. Summary of LASRE engine performance (Continued).

Test # GRUNO0020* GRUNO019*
Test date 9/1/96 7/26/96
Test Objective Gd. cold flow Gd. cold flow
Blow # 1 2 1 2
LOW Thrust Side
TH#5 |LOX mfd P (psia) [PT0356] 193 202 191
Fuel mfd P (psig) [PT0156] 115 249*** | 251***
Fuel mfd T (F) [TT0156] n/a 110 86
Pc (psig) [PT0005] 14 31 27
LOX side density (Ib,/ft%) 61 66 68
LOX side flow rate (Ib,/s) 1.38 1.43 1.43
LOX side ACd (in?) 0.021 0.021 0.021
Fuel side flow rate (Ib,/s) 0.21 0.38 0.38
Fuel side ACd (in%) n/a n/a n/a
MR n/a n/a n/a n/a
actual C* (ft/s) n/a n/a n/a n/a
C*, efficiency (%) n/a n/a n/a n/a
TH#6 |LOX mfd P (psia) [PT0357] 194 204 182
LOX mfd T (F) [TT0357] -245 -269 -276
Fuel mfd P (psig) [PT0157] 96 191 193
Pc (psig) [PT0006] 10 30 30
LOX side density (Ib,/ft) 61 66 68
LOX side flow rate (Ib,/s) 1.38 1.43 1.43
LOX side ACd (in%) 0.020 0.021 0.022
Fuel side flow rate (Ib,/s) 0.21 0.38 0.38
Fuel side ACd (in?) n/a 0.210 0.205
MR n/a n/a n/a n/a
actual C* (ft/s) n/a n/a n/a n/a
C*, efficiency (%) n/a n/a n/a n/a
TH#7 |LOX mfd P (psia) [PT0358] 188 196 179
Fuel mfd P (psig) [PT0158] 88 190 190
Pc (psig) [PT0007] 16 31 30
LOX side density (Ib,/ft%) 61 64 68
LOX side flow rate (Ib,/s) 1.38 1.43 1.43
LOX side ACd (in%) 0.021 0.022 0.022
Fuel side flow rate (Ib,/s) 0.21 0.38 0.38
Fuel side ACd (in%) n/a 0.211 0.208
MR n/a n/a n/a n/a
actual C* (ft/s) n/a n/a n/a n/a
C*, efficiency (%) n/a n/a n/a n/a
TH#8 |LOX mfd P (psia) [PT0359] 191 204 188
LOX mfd T (F) [TT0359] -245 -259 -276
Fuel mfd P (psig) [PT0159] 99 192 195
Pc (psig) [PT0008] 17 34 33
LOX side density (Ib,/ft*) 61 64 68
LOX side flow rate (Ib,/s) 1.38 1.43 1.43
LOX side ACd (in?) 0.021 0.021 0.022
Fuel side flow rate (Ib,/s) 0.21 0.38 0.38
Fuel side ACd (in%) n/a 0.209 0.203
MR n/a n/a n/a n/a
actual C* (ft/s) n/a n/a n/a n/a
C*, efficiency (%) n/a n/a n/a n/a
LOW thrust side ave. Pc (psig) 14 -- 32 30
LOW thrust side ave. MR n/a n/a n/a n/a
LOW thrust side ave. C*, eff. (%) n/a n/a n/a n/a

* GHe used on fuel side  ** Ignition test ~ *** instrumentation questionable  ALN2/GHe used for LOX/GH2
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Figure 17. Steady-state trends in the LOX system data.
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Figure 17. Steady-state trends in the LOX system data (Continued).
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Figure 18. Steady-state trends in the fuel system data (Continued).
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Figure 20. Steady-state trends in the thruster data.
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HIGH Thrust Side of Engine—Fuel Manifold Pressures
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Figure 20. Steady-state trends in the thruster data (Continued).
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Figure 21. LASRE engine supply systems.
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Table 12. Additional notes for GRUNOO19—GRUNOO063 tests.

Test # Notes
GRUNO0019  |TTEB #2 did not provide flow in 2nd blow
7/26/96 LOX T/C's were checked & corrections had to be applied to all T/C data
Gd. cold flow  |PT0355 reading low (TH#4), PT0156 reading high (TH#5)
LOX leaked between blows
GRUNQ0020 |Main fuel valve did not work properly in 1st blow - provided low pressure to venturies
9/1/96 LOX leaked between blows
Gd. cold flow  |2nd blow aborted in PS, since inadequate AT was measured for LOX system (LOX system remained cold due to leak)
Main fuel valve did not work properly in autosafe (a/s) either & produced high enough pressure to rupture burst disc
GRUNO0022 |Aborted in PS 3 times-exceeded water tank R/L (proceeded after raising R/L value)
10/12/96 PT0360 inop
Gd. cold flow | LOX prechill line disconnected from engine - flow dumped overboard & showed that valve closed slowly
Engine water froze during LOX a/s
Leaks found in engine water fittings
GRUNO0023 |Main fuel valve started closing early near end of each blow & fuel a/s aborted as valve closed early
10/25/96 Water a/s (added to sequence prior to LOX a/s) attempted - performed twice to remove all water
Gd. cold flow |LOX a/s aborted - low He pressure (PT0651)
LOX prechill line still disconnected from engine
Water system F/M removed (to prevent overspinning in water a/s)
GRUNO024  |1st blow successful, 2nd blow aborted due to high controller temp.
11/9/96 Later attempted another test, providing 3rd blow successfully (data shown for "2" on summary sheets)
Gd. cold flow | Aborted in a/s (high controller temp. again)
New LOX prechill valve closed properly - no apparent leaks
GRUN0025 |Aborted in 2nd blow when fuel system burst disc ruptured (providing low fuel system pressure). No high pressure
11/15/96 observed, but burst disc ruptured anyway
Gd. cold flow | Water frozen at start of 2nd blow (higher AP due to higher line R) & possibly during 1st blow
Fuel mfd. temps still reading "off"
Revised water a/s still didn't remove all water
GRUN0026 |No aborts
11/22/96 Water frozen at start of 2nd blow & possibly during 1st blow
Gd. cold flow  |Fuel mfd. temps still reading "off"
Possible small water & LOX leaks observed
GRUN0027 |1st blow showed indications of water freezing similar to GRUN0025 & 26 (higher engine inlet P, lower engine outlet P)
12/3/96 All water had been confirmed drained from engine prior to test, unlike -25 & -26 when there may have been residual H20
Gd. cold flow |2nd blow had enough frozen water to increase water tank pressure above R/L, which aborted 2nd blow before fuel flow
Fuel a/s performed, but no water or LOX a/s attempted
LOX leak observed from area around LOX prechill valve
Water B/D (rchk0009) performed on 11/27/96 confirmed line R's and water flow rate with F/M in place - compared well
to original water B/D's
F/M kept in place for this test to provide flow data relative to frozen flow
Fuel mfd temps. still reading "off"
GRUN0028 | Only single blow performed (as planned)
12/11/96 Sequence changes implemented to reduce water trickle flow during LOX prechill & to move 2nd "start" press after
Gd. cold flow LOX tank is pressurized. (Everything that was performed in PS now occurs in SS, except for pr'ng LOX tank)
Also, TC's added to each thruster (outer surfaces - near mold lines) - data recorded by PL
Higher water flow rate observed with same engine pressure drop as observed in water b/d
LOX leak at tank fitting observed
Trapped pressure in main fuel purge line (PT0104) when fuel purge valve (SV0101) cycled to relieve He mfd
pressure (SV0101 set to open when PT0210 > 1325 psi)
GRUNO0029 |Only single blow required
12/17/96 Aborted in 1st attempt when water tank HIGH R/L was reached due to spike in water system after valve was opened.
Gd. cold flow After powering controller off/on, 2nd attempt provided full duration (data shown)

Water F/M inop - flow rate est. from engine AP & result in GRUN0028
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Table 12. Additional notes for GRUNO019—-GRUNO0063 tests (Continued).

Test # Notes
GRUNO030 |Only single blow planned - performed with no aborts
1/18/97 Fuel mfd temps. reading "off" again & TT0156 responds to LOX flow with a drop in temp (like in GRUNO027 & others)
Gd. cold flow | Water F/M inop - no plans to replace (flow rate est. from engine AP)
Water valve leaked after blow
GRUNO0031  |1stignition test attempt - performed with no aborts (TTEB #1 cartridge used)
1/23/97 All 8 thrusters lit to approx. same Pc (~30-35 psig) at the same time
Ignition test | Backflow of LOX/TTEB ignition observed in each fuel mfd relative to fuel mfd pressures, also fuel mfd temp.
TT0152 reached ~360 F due to ignition backflow
Offset between TT0152 and TT0156 still present, but TT0156 did not respond to LOX flow with a drop in temp.
like in GRUNOO30
Proposed sequence change will check Pc's for ignition detect earlier, so fuel can come on earlier (before all
TTEB is expended)
Water valve still leaking
Post-test inspections showed minimal amount of coating spalled off several of the thrusters (mostly d/s of throat)
GRUN0032 |2nd ignition test attempt with following sequence changes implemented prior to test:
1/31/97 0.2 sec delay between signalling fuel valve open and signalling fuel purge valve closed (to aid in removing LOX/TTEB
Ignition test from fuel mfds. before hydrogen reaches injectors)
Ignition detect timer started earlier (to allow fuel flow to start & reach injectors before all TTEB is expended)
TTEB #2 cartridge used
Full tank of LOX not available, so LOX quality was poor throughout test. Warmer LOX temps. created lower flow rates
and lower ignition pressures (~10 psig) with TTEB. (With the venturies uncavitated, 80% & 20% flow rates were
estimated from the venturi AP's, and flow thru the 100% venturi was assumed to be equal to their total.)
Fuel mfds. showed evidence of LOX/TTEB backflow - TT0156 reached ~210 F, while TT0152 remained around ambient.
Water valve still leaking
Possible leaks in fuel purge line suspected - trapped pressure at PT0104 decreases during main fuel flow instead of
remaining steady.
GRUNO0033 |2 ignition tests performed using both TTEB circuits
2/6/97 Sequence changes implemented prior to test:
Ignition test Delayed opening of fuel valve to allow LOX/TTEB to burn completely - to determine the exact amount of TTEB
available. (Created 2 sec of main flow instead of 3 sec for each blow.)
Ignition in 1st blow (cartridge #2):
All Pc's rose to same level (30-40 psig) except TH#5, which was much lower (10-15 psig)- indicating blocked port
Evidence of LOX/TTEB backflow into fuel mfds. based on fuel mfd P's and TT0152 reached 193 F during ignition
Also, fuel side 100% venturi inlet T (TT0160) rose to 94 F at the same time TT0152 rose, suggesting back flow
all the way up thru this venturi
Approx. 0.5 - 0.6 sec of TTEB flow available based on Pc's
Main flow in 1st and 2nd blow:
All fuel mfd. P's are reading higher compared to cold flows prior to ignition tests (prior to GRUN0031)
Ignition in 2nd blow (cartridge #1):
TH#5 Pc more consistent with others (blockage came loose?)
TT0152 rose even higher during ignition (360 F)
Approx. 0.5 sec of TTEB flow available based on Pc's
Water pressure low (possible freezing at start of 2nd blow)
Water valve still leaking
Fuel side resistances have been increasing (higher fuel mfd. pressures) for each thruster since first ignition test.
Current resistances indicate 13-17% decrease in fuel side flow areas. Could be LOX/TTEB residue on
fuel side from low fuel side purge - blocking fuel holes &/or fuel film cooling holes.
Possible leaks in fuel purge line suspected - same behavior as GR'32 during main fuel flow.
1st planned hot-fire: main H2 valve failed after pre-test servicing of hydrogen (bellows experienced H2
2/12/97 embrittlement crack). No test attempted.

Valve redesigned to use a piston instead of bellows.
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Table 12. Additional notes for GRUNO019—-GRUNO0063 tests (Continued).

Test # Notes
GRUNQ0035 |Cold flow with redesigned H2 valve installed (piston type). GHe used for TTEB and H2 systems.
4/16/97 PT0156 temporarily removed from TH#5 fuel mfd. (electronics being used for GH2 tank pressure until
Gd. cold flow H2 compatible diaphragm for tank's Sensotech ‘ducer is replaced).
Only one blow attempted and performed with no aborts
Behavior of PT0104 suggests fuel purge line check valve (CV0101) or main fuel purge valve (SV0101) is leaking.
During main fuel flow when SV0101 is closed and trapped purge flow should be checked, PT0104 steadily
rises instead of remaining steady or decreasing due to leaks (like in GR'32,33). [Similar behavior in fuel a/s].
Confirmed SV0101 was leaking - changed out prior to GR'36.
GRUNQ0036 |1st hot-fire test; Single burn attempted & performed with no aborts.
4/23/97 Objective: Pc ~ 200 psia & MR ~ 6.0 for 3 sec
Gd. hot fire Results:
Mainstage duration - 3 sec
HIGH thrust side - ave. Pc = 228 psia, MR = 5.7
LOW thrust side - ave. Pc = 216 psia, MR = 5.4
Engine coolant AP =402 psi, AT =63 F
Fuel side ACd for each thruster decreased further (approx. 30% total reduction).
Some coating spalled from thrusters.
For ignition, all thruster showed Pc's of 27-36 psig, except TH#5 showed Pc as low as 21 psig;
Ignition detect was set at 15 psig.
Note: PT0156 P/D used for fuel tank pressure (instead of PT0101). No data available for TH#5 fuel mfd. pressure.
Still evidence of leaks in fuel purge line - PT0104 decreases during main fuel flow (same as GR'32 & 33)
GRUNQ0037 |2nd hot-fire test; Single burn attempted & performed with no aborts.
4/30/97 Objective: Pc ~ 200 psia & MR ~ 6.0 for 3 sec
Gd. hot fire Results:
Mainstage duration - 3 sec
HIGH thrust side - ave. Pc = 227 psia, MR = 5.7
LOW thrust side - ave. Pc = 216 psia, MR = 5.4
Engine coolant AP = 398 psi, AT=70 F
More coating spalled from thrusters.
For ignition, all thrusters showed Pc's of 30-36 psig. Ignition detect remained set at 15 psig.
Still evidence of leaks in fuel purge line - PT0104 decreases during main fuel flow (same as GR'32,33,36)
Note: PT0156 P/D still used for fuel tank pressure, so no data available for TH#5 fuel mfd. pressure.
GRUNO038 |1st Flight configuration ground cold flow - LN2/GHe used for LOX/GH2 with pod mounted on stationary A/C.
9/24/97 One blow planned and performed with no aborts.
FIt. cold flow | 1" orifice mistakenly placed in water exit line - created higher water inlet & exit pressures. (Orifice has been
(grounded) removed from configuration since water blowdown results showed it was limiting coolant flow rate.)

Orifice will be removed again before next test.

PT0362 inop - flat throughout test.

PT0156 available again, since PT0101 was replaced.

Fuel venturi inlet pressures and fuel manifold pressures 10-20 psi higher than previous tests with GHe because
of new P/D in system for PT0102. The value required for PT0102 is set to provide the desired fuel venturi inlet
pressures that provide the correct fuel flow rate. The new P/D for PT0102 probably has a more reliable
calibration record than the previous P/D. So, the previous test data for PT0102 is probably less accurate.
The higher pressures now resulting at the fuel venturies will produce slightly higher fuel flow rates, which
will produce lower MR's in subsequent hot fire tests. The value for PTO102 will not be reset, since effects of
higher fuel flow rates will be minimal - should only reduce ave. thruster MR from 5.6 to ~ 5.3. (PT0102 was
replaced because old P/D turned out to be H2 incompatible.)

Still evidence of leaks in fuel purge line - PT0104 decreases during main fuel flow (same as GR'32,33,36,37)
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Table 12. Additional notes for GRUNO019—-GRUNO0063 tests (Continued).

Test # Notes
GRUNO0039 |2nd Flight configuration ground cold flow - LN2/GHe used for LOX/GH2 with pod mounted on stationary A/C.
10/3/97 Planned to demo EMERSS and CNTR PWR OFF shutdowns. (State table changed to make shutdown sequence due
Fit. cold flow to EMERSS abort the same as normal shutdown - 1.25/1.5 sec delay on LOX/fuel engine purges removed.)
(grounded)  |Aborted in prestart when LOX tank failed to pressurize properly (only reached ~200 psi instead of 365 psi nominal).
Data and post-test checks on LOX system suggest the LOX vent valve was leaking, so the LOX tank could not
pressurize during prestart. LOX vent valve will be replaced before next cold flow.
Leak also suspected in hydrogen vent line based on behavior of oxygen sensors during manual safing of fuel system.
Manual safing performed successfully on fuel and LOX systems - but back pressured hydrogen system burst disk,
S0 it needs to be replaced before next cold flow attempt.
CST0004 Combined systems test and first taxi test with pod mounted on A/C.
10/10/97 Pressurized tanks (He, H2, and LOX) showed no leaks.
CST/taxi Significant leaks into pod relative to 02 sensors during taxi. N2 purge proved inadequate for keeping air out of pod.
FLT0045 1st aero flight with pod mounted on A/C. No cold flow performed on engine.
10/31/97 Ambient hardware temps. ~ 60-80°F throughout flight.
Altitude reached ~ 33,000 ft. Max. Mach no. ~ 1.2
GRUNO0041  [2nd Flight configuration ground cold flow - LN2/GHe used for LOX/GH2 with pod mounted on stationary A/C.
12/9/97 Retry of GR'39 - with new LOX vent valve. Planned to demo EMERSS and CNTR PWR OFF shutdowns.
FIt. cold flow Also prior to test - changed out H2 system burst disc, performed 02 sensor checks & calibrations, tried to seal
(grounded) air leaks into pod, leak checked H2 vent system.
results: LOX vent valve still did not appear to work properly.
1st attempt - aborted in prestart when LOX tank failed to pressurize, like in GR'39
Prior to 2nd attempt - warmed up engine thinking that LOX vent valve has a thermal problem with cold temps.
This blow was successful getting to mainstage, and successfully aborted with EMERSS press.
3rd attempt - aborted in prestart when LOX tank failed to pressurize, like in 1st attempt
Fuel purge line leak appeared to be fixed.
FLT0046 2nd aero flight. Due to problems pressurizing LOX tank, no cold flow performed. GN2 purge of pod could not be
12/19/97 checked either due to failure of SR-71 LN2 dewar heater prior to take off.
Altitude reached ~ 50,000 ft. Max. Mach no. ~ 1.6
GRUNO0046  [3rd flight configuration ground cold flow - LN2/GHe used for LOX/GH2 with pod mounted on stationary A/C.
2/12/98 Retry of GR'41 after working on LOX vent valve (moved valve orifice downstream from original upstream location to
FIt. cold flow see if that helps solve the LOX vent valve problem).
(grounded) 2 blows planned - planned to demo CNTR PWR OFF shutdown in second blow

results:
1st blow - nom. performance; TT0352 inop (also, TT0363 - 20% venturi - staying colder at c/o than other venturies)
2nd blow - water system pressures slower coming up; CNTR PWR OFF initiated 1 sec into main flow
LOX & fuel engine supply valves close appropriately to isolate engine; LOX trickle valve slow closing -
LOX venturi & mfd pressures drop to same level as trickle flow for ~ 1.5 sec after cntr pwr off;
water supply valve remained in active open position, so all water was drained out prior to water a/s;
fuel a/s nominal; 2 LOX a/s had to be performed - when controller was powered back on (to perform a/s),
LOX tank had to be repressurized - took longer than normal because of larger ullage in LOX tank -
1st a/s timed out before a/s could be completed, so 2nd performed to remove remaining LOX.
end of test showed high spike in engine's water inlet pressure (water exit pressure unaffected) - possible due to
local droplets on pressure transducer freezing after 2 LOX a/s procedures. All water confirmed drained
after test (inspections noted all hdw extremely cold after 2 LOX autosafes.) Water system leak checked to

insure integrity.
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Table 12. Additional notes for GRUNO019—-GRUNO0063 tests (Continued).

Test #

Notes

FLT0047
3/4/98
Fit. cold flow

1st in-flight cold flow. LN2/GHe used for LOX/GH2. Cold flow performed at 41,000 ft and M=1.2

Unable to pressurize LOX tank in 1st prestart - same LOX vent valve problem suspected. 2nd prestart LOX tank
pressurized to nominal value.

Aborted in fuel autosafe - TTEB max pressure redline reached. 2nd fuel autosafe performed for full duration.
In previous cold flows - PT0651 also close to hitting R/L of 30 psi. Tripped R/L in this test when
PT0651 read ~ 31 psi for 2 consecutive time slices. Increasing R/L to 35 psi to avoid cutoffs in further tests.

TT0352 still inop

GN2 purge of pod proved inadequate for keeping air out. Pod filled with air shortly after takeoff. Will make further
attempts at sealing pod and try another cold flow flight.

All other engine & supply system parameters appeared to perform nominally compared to prior cold flows.

To adjust gage pressures to absolute pressures, P, ~ 3 psi at 41,000 ft. (from altitude refs.)
(all psia 'ducers read 0-5 psia with no flow, so an average P, of ~ 3 psia seemed reasonable & was used to convert the psig data)
(PT0354, TH#3 LOX mfd P, reads psig. It's initial reading was ~ -11 psig, so it was showing an offset. This pressure was adjusted
by adding 11 psig to its steady state measurements and then increased by 3 more psi to convert to psia. PT0358, TH#7 LOX mfd P -
which also reads psig, was initially reading ~ -3 psig, so its offset was not as great. It was among the same range as the other LOX mfd P's
after adjusting to psia by adding 3 psi.)

FLT0048
3/19/98
Fit. cold flow

2nd in-flight cold flow. LN2/GHe used for LOX/GH2. Cold flow performed at 31,000 ft and M=0.9

Similar to FLT'47 - required 2 prestarts to properly pressurize LOX tank to nominal level.

GN2 purge of pod saw some improvement (7-10% 02 levels vs 15% in FLT'47).
Will continue attempts to seal the pod even better.

All engine & supply system parameters appeared to perform nominally.

TT0352 still inop

P.m ~ 4 psi at 31-33,000 ft.
(PT0354 adjusted with +10 psi again, like in FLT0047)

All/most psig 'ducers reading lower with no flow (~-10 psig) compared to ground tests (~0 psig). Possible suction
at the back of the engine during flights is creating lower reading on gage pressures when no flow is present.(?)

FLT0049
4/15/98
Fit. cold flow

Flight cold flow w/ignition test planned. LOX/TTEB loaded, GHe used for GH2. Performed at 26,000 ft and M=0.75
No ignition because TTEB was mistakenly loaded into wrong canister. Cold flow state table used, so main cold
flow was still performed successfully with LOX and GHe.
2 prestarts req'd again to pressurize LOX tank.
GN2 purge of pod improved significantly (3-3.5% 02 levels; 4% is R/L level)
LOX leak observed after cold flow completed - 02 sensors > 20% in model after main flow.
LOX a/s not performed - manual safe of both LOX and fuel systems performed (fuel manual safe had been planned)
Water frozen during water a/s - no pressure reading from PT0453 (engine exit pressure) to indicate flow,
and PT0451 (inlet) registered high reading even during water trickle flow, preceding main water flow.
Water exit temp (TT0453) and ramp temp TT0455 registered close to freezing temp. of water. All temps cooler
to start with compared to other flight tests.
No water freezing problems during a/s in FLT'48 & '47, maybe occurred in this test because of LOX leak
or because the successful GN2 purge of pod is creating cooler environment around engine. (?)
TT0352 still inop
P.m ~ 4 psi assumed at 26,000 ft. (PT0354 adjusted again with + 10 psi, like in FLT'48,'47)
All engine & supply system parameters appeared to perform nominally.
LOX venturi & mfd pressures ~ 20 psi lower during LOX trickle flow compared to FLT'48 & '47. During main flow
pressures are at levels similar to FLT'48 & '47. Could imply that LOX leak is in LOX trickle flow line.
Post-test: actual LOX leak discovered at check valve (CV0302) in LOX purge line.
Seal replaced to fix leak (will also visually verify leak tight w/high pressure LN2 blowdown)

GRUN0047
4/29/98
leak check

Ground test to check for LOX system leaks using LN2 during LOX autosafe.

3 LOX autosafe performed.

The LOX vent valve was set to the open position using the cockpit switch for the 1st attempt, and the tank
still pressurized. The vent valve was closed for subsequent 2 autosafes.
Leak was discovered in the LOX pre-chill line where it connects to the main flow line.
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Table 12. Additional notes for GRUNO019—-GRUNO0063 tests (Continued).

Test # Notes
GRUNO0048 |Ground test to check for LOX system leaks using LN2 during LOX autosafe.
5/5/98 2 LOX autosafes performed.
leak check Both LOX tank pressurizations were successful on the first attempt.
No leaks observed in LOX system.
GRUNO0049 |Ground test to check for LOX system leaks using LN2 during LOX autosafe.
6/12/98 All fitting torques were checked prior to test.
leak check 2 LOX autosafes performed.
Leak observed in LOX purge line at check valve CV0302's fitting.
GRUNO0050 |Ground test to check for LOX system leaks using LN2 during LOX autosafe.
6/24/98 Fittings at CV0302 were welded to eliminate leak paths prior to test.
leak check Four autosafe blow downs were performed with LN2 and no visual leaks were observed.
No main flow attempted - only "LOX" autosafes.
The system was allowed to warm up to 0 deg F between blows to obtain 4 cryogenic cycles on the system.

FLT0050 Flight cold flow with LOX/GHe to verify LOX system remains leak free in flight with 02 sensors available.

7/23/98 Performed at 31,000 ft and M = 0.9
FIt. cold flow  |Pam ~4 psi  (PT0354 adjusted again with +10 psi)

Pod sealed even better than last flight - all sensors > 3%

Unfortunately, another LOX leak detected after main flow began - 2 sensors shot up 5 sec after blow (sensors 11
& 12 are near top of model). Did not conduct autosafe because of LOX leak.

PT0363 read ~ 20 psi higher than PT0360 & PT0364 (venturi inlet pressures) during main flow and ~ 10 psi
higher during trickle flow.

Fuel mfd pressures on the HIGH thrust side (PT0152-5) read ~ 10 psi higher than FLT'49.

Water did not appear frozen during water a/s like it did in FLT'49. Water a/s appeared normal.

PT0001 reading slightly higher than PT0002-4, which is not consistent with FLT'49; PT0005 reads slightly higher
than PT0006-8 but behavior is consistent with FLT'49.

GRUNO0052 |Ground cold flow with 3% GH2/97% GHe mixture for fuel system leak check.

7/30/98 Hydrogen detectors showed no indication of hydrogen leak throughout system during main flow or fuel autosafe.
FIt. cold flow  |No internal pod GN2 purges were running during the test, so hydrogen could be detected in "unpurged" environment.
(grounded) LOX tank not holding pressure during main flow. SV0304 is supposed to keep PT0301 between 365 & 375 psi, but

tank pressures start to drop below 365 psi midway thru the main flow. LOX venturi pressures drop correspondingly.
PT0205 (u/s of tank) should regulate with LOX tank pressure, but remains low during main flow also.
Plots of SV0304 signal shows SV0403 remained open to try to regulate pressure.
Maybe LN2 was leaking or maybe LOX vent valve inadvertently opened to release LN2.
Same behavior for PT0301 and PT0205 during LOX a/s.
Three "prestarts" were req'd to pressurize LOX tank initially. Same LOX vent valve problem suspected.
All LOX venturi inlet pressures matched in this test, unlike FLT'50 when PT0363 was reading higher.
TT0156 (TH#5 fuel mfd temp.) worked fine during ss and fuel a/s, but registered 400 F during water a/s and LOX a/s.
Near end of LOX a/s, TT0156 drops to same level as TT0152 briefly and then spikes again and levels out at zero.
Next scheduled test on 8/6 will investigate LOX leak further by visually checking system with LN2 during blowdown.
GRUNO0053  |Ground test to locate LOX leaks detected in FLT'50. LN2 used in LOX system - visually checked for leaks during

8/6/98 2 LOX autosafes. In 1st a/s, no leaks observed, but 2nd a/s showed some discoloration exiting B-nut on engine

leak check attachment. Came from a RD fitting that was safety wired - leakage was thru B-nut. RD recommended re-torquing

to see if fitting moved. When torque was checked on 8/7/98, movement was observed, so fitting was re-torqued
and safety wire was reinstalled.

Also, suspect LOX vent valve opened sometime during flow, since tape covering had come off. Plan to get valve
refurb'ed, reworked, replaced?

Data for LOX tank (PT0301) and PT0205 (u/s of tank) resembled data for GR'52 suggesting leak or vent valve problem.

TT0156 (TH#5 fuel mfd temp.) appeared to work initially, but appears to fail during first a/s when it read 400 F again -
continues to read this high for remainder of test.

Also, after test was finished, controller aborted due to servo amp over temp. Checking on this further to see if
incident was "real" or not.
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Table 12. Additional notes for GRUNO019—-GRUNO0063 tests (Continued).

Test # Notes
GRUNO0054 |Ground test with LN2 to visually check for LOX system leaks after re-torquing leaky fitting from GR'53.
8/14/98 Three cold flows + LOX a/s + water a/s performed. 1st cold flow aborted.
FIt. cold flow  [1st cold flow aborted in SS when TT0364 failed to show appropriate drop in LOX temp. Turned out to be a software
(grounded) problem that read all temps incorrectly. After resetting - 2 subsequent cold flows successfully performed.
After 2nd cold flow, audibly heard leak that was found at inlet side of main LOX valve (PV0301).
Will replace o-ring (k-seal) but inspections did not indicate o-ring was bad.
TT0156 still not working properly throughout test.
GRUNO0055  [Ground test with LN2 to visually check for LOX system leaks after working on LOX valve seal.
8/19/98 Two cold flows + two LOX a/s + water a/s performed.
Fit. cold flow  [LOX valve (PV0301) still leaked.
(grounded) TT0156 appears to be inop completely now. Checkouts show its likely the 'ducer itself - can't be fixed without
breaking into engine. Will leave inop. To estimate LOW side fuel manifold temps, add 9 degrees to TT0152.
LOX manifold pressures appear to be increasing - they are slightly higher in all thrusters for this test compared to
other tests. Is this a result of fixing LOX leak discovered at engine's B-nut connection?
Engine LOX leak that was fixed after GR'53 was actually only on the HIGH thrust side of the engine - downstream
of the 100% venturi, upstream of thrusters 1-4. So, fixing this leak might explain the higher manifold
pressures for TH#1-4, but not TH#5-8, which actually showed even higher pressure trends than TH#1-4.
Check data from next test to see if all pressures continue to increase, stay the same, or go back to previous levels.
Water a/s showed manifold pressure was high enough for controller to relieve pressure 15 times. Discovered a
bad pressure regulator in canoe GHe system. While servicing regulator valves, discovered o-rings were missing -
searching water system for them (boroscoping water tanks to see if they can find them.)
GRUNO0056  |Ground test with LN2 to visually check for LOX system leaks after installing teflon coated SS K-seal in fitting u/s

9/11/98 of LOX valve (PV0301) to try to fix recurring leak.

Flt. cold flow  [One of the canoe He regulators was out, so water pressure is reduced throughout test.

(grounded) Low canoe helium pressure caused abort in 3rd main flow (3ss).
During 1st main flow (1ss) leak observed in LOX prechill line. Aborted to retorque fitting.
No leakage observed in subsequent main flows and autosafe.

GRUNO0057  |Ground test with LOX to visually check for LOX system leaks.

9/18/98 One of the canoe He regulators still out, so water pressure was low again.

Flit.cold flow |2 main flows and 1 a/s performed

(grounded)  |Shortly after 1st main flow, model 02 levels rose to about 1.5%, followed by rise in canoe 02 level.
After 2nd main flow, model 02 level rose to below 1%, with little response from canoe 02 level.
After LOX system a/s, model 02 level rose to about 3.3%.

GRUNO0058 |Ground test with LOX to check for LOX system leaks with 02 sensors (pod sealed)

9/30/98 Main flow aborted early with low water pressure (one of the canoe He regulators still out, limiting water pressure)
Fit.cold flow [LOX leaks detected with sensors during LOX autosafe - model 02 levels rose to about 4.5%, followed by
(grounded) rise in canoe 02 level.

GRUNO0059 |Ground test with LOX to check for the LOX system leaks with 02 sensors.
10/2/98 2 main flows + 1 a/s performed.
Fit.cold flow [Model 02 levels rose to about 6-7% after 1st main flow (suspect unsecured LO2 manual vent valve panel allowed
(grounded) purge flow to escape)
02 levels in 2nd main flow and autosafe were similar to levels measured in GR'57 & '58
GRUNO060 |Ground test with LN2 to visually check for LOX system leaks. All accessible LOX system joints & fittings were
10/7/98 bagged using clear plastic material.
Flt.cold flow |2 LOX system cold flows + autosafe performed
(grounded)  |During autosafe, some indication of a leak downstream of main LOX valve.

LOX tank was reserviced to fill with LN2 and 3rd cold flow and 2nd a/s performed.
(2 hour hold used to allow LOX system to warm up)
3rd a/s attempted, but no LN2 available
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Table 12. Additional notes for GRUNO019—-GRUNO0063 tests (Continued).

Test # Notes

GRUNO0061  [Ground test with LN2 to visually check for LOX system leaks.
10/9/98 No leaks observed in 2 main flows and a/s.

Fit.cold flow

(grounded)

GRUNO0062 |Ground test with LOX to check for leaks using 02 sensors.

10/16/98 3 handheld 02 sensors set up to detect leaks around engine interface and sewer pipe. Pod N2 purge used a 3X orifice.
Flt.cold flow |2 cold flows + 1 a/s planned.
(grounded)  |Handheld detectors inop.
Systems display that supplies abort info was inop due to OFP change
Controller aborted both cold flow attempts - suspected problems with newly installed canoe He regulator.
Attempted water a/s failed due to incorrect button presses (H2 a/s was selected rather than H20). Caused aborted

H2 a/s since blocking valve was closed.

GRUNO063  |Ground test with LOX to check for leaks using 02 sensors.
10/21/98 Pod N2 purge used a 3X orifice size.

Fit.cold flow |2 LOX blows, 2 water a/s, & 1 LOX a/s completed.

(grounded)  [Max. 02 levels detected were ~ 2% after 1st blow, 1% after 2nd, & 4.5% after LOX a/s.

1st water a/s - flowed very little water, with a/s completing early due to low water tank pressure.

2nd water a/s - expelled water until controller aborted due to water inlet pressure max. R/L of 660 psi [ PT0451
had a 300 psi offset at ambient conditions due to damage from previous ground test}

Data shows 80% LOX venturi inlet pressure reading ~ 20 psi higher during main flow (~ 10 psi higher during
prechill). Similar behavior to FLT'50. All other LOX system data remained consistent with previous tests.

FLT0051 Flight test with LOX to check for leaks using 02 sensors.
10/29/98 1 LOX blow and 1 LOX a/s performed at 31,000 ft and Mach # = 0.9
Flt. leak chck  |80% LOX venturi inlet pressure returned to nominal level.
All other LOX system and engine data looked nominal and consistent.
Max. 02 levels detected were ~ 6.2% after main blow, & ~ 9.5% after LOX a/s.
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APPENDIX G—Water System Results

Appendix F summarizes the steady-state data for the water system in each test.
G.1 Flow Rate Calculations

Initially in the LASRE program, a turbine flowmeter was located in the coolant’s exit line to
measure the water’s flow rate. This flowmeter was eventually removed when the water autosafe proce-
dure was added to alleviate concerns about overspinning its turbine blades (when all the water was
expelled, high-speed GHe would be flowing across the flowmeter). After the flowmeter was removed,
the coolant’s flow rate was estimated by scaling the resulting pressure drops between subsequent tests.

Example:
GRUNO0020—with F/M data:
m=39.61b,, / sec’ engine AP = 389 psi
GRUNO0022—F/M removed:
engine AP =411 psi .

Since resistance, R, through the engine should be the same,

R= APép ' (1)
m
Since P=constant
mz)/ _ API ' (2)
m? AP

Estimated for GRUNO0022 by solving equation (2):

i’ = \/(%)(39.6 by, /sec)” = 40.7 Iby, / sec .

In the tests where freezing the coolant in the engine was a problem, the flow rate was estimated
by scaling relative to the AP from the water tank to the engine’s inlet, since the resistance within the
engine would be changing due to the freezing coolant.

Water system performance during GRUNOO36 is shown in figure 23 (pressures responded as
expected).
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APPENDIX H—LOX System Results

The LOX system performance during GRUNO0O036 is shown in figure 24. LOX system pressure
and temperatures responded as expected.

Appendix F provides the steady-state data and calculation results for each test.
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Figure 24. LOX system performance during GRUNO0036.
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H.1 LOX Flow Rate Calculations

LOX flow rates were calculated based on the venturi inlet pressures and temperatures. These
inlet conditions, along with the venturi sizes, were used to determine the corresponding flow rates for
cavitating flow.

While the 20- and 80-percent venturies included throat pressure measurement to check for
cavitation, the overall pressure ratio across each venturi could also be used. Cavitation was ensured if
P ,i/P;, = 0.85 or less (although cavitation can occur even when the pressure ratio is higher). Using the
LOX manifold pressure as P, (assuming negligible pressure loss between the venturi exit and the inlet
of the thrusters), the resulting pressure loss in each venturi was checked.

Example (GRUNO0023):
100-percent LOX venturi: P;, =352 psia
Thruster No. 1 LOX manifold: P, =197 psia.

Resulting pressure ratio = 197/352 = 0.56, so cavitation was ensured on the HIGH thrust side of
the engine.

80-percent LOX venturi: P, = 345 psia

Thruster No. 5 LOX manifold: P =209 psia.

Resulting pressure ratio = 209/345 = 0.61, so cavitation was insured on the LOW thrust side of
the engine. Cavitation was also confirmed in the 80-percent venturi when the resulting throat pressure
measured 33 psia. With vapor conditions obviously resulting in the throat based on this pressure,

cavitation was definitely occurring.

To further calculate the actual flow rates, the incompressible flow equation was used:

m=ACy\2g.pAP , (3)
where

A = flow area in venturi throat, in.2

C, = venturi discharge coefficient

g, = gravitational constant = 32.2 1b_ ft/Ib; s?
p = liquid density of LOX, Ib_ /ft3

AP = pressure loss from venturi inlet to venturi throat, psi.
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Example (GRUNO0023):

For 100-percent venturi:

D,=0.28 in. and C,;=0.989; .. AC,; = (1/4)(0.28)%(0.989) = 0.0609 in.?
P, =352 psia and T}, = -266 °F.

For a cavitating venturi, the resulting throat pressure equals the vapor pressure of LOX. So, using
MIPROPS (a computer code for thermodynamic properties of several fluids), the vapor pressure of LOX
at —266 °F was found:

P\,apor = 606.5 psia
o AP =352.0 - 66.5 = 285.5 psia.
The density of the LOX was found using MIPROPS and the inlet conditions of the venturi:
p =66.925 Ib_ /ft3 (at 352 psia and —266 °F).

Finally solving equation (3),

2(32.2 by, - ft / b -s2)(65.925 Ib,, / ft3)(285.5 Ibg / in.%)
144 in.% / ft>

i = 0.0609 in.2 \/ =5.6 Ib, /sec .
H.2 LOX Side AC; Calculations

For each thruster in the engine, the adjusted flow area, AC, of the LOX side of the injector was

calculated for each test. These values were used as a reference for the hardware. Significant changes to

the flow areas of the injectors could be indications of hardware anomalies.

These flow areas were also calculated using the incompressible flow equation, along with the
conditions measured in each thruster:

m

\J28.pAP 4)

AC,; =
where, in this case,

AP:PLOmed_Pc
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Example (GRUNO0037):
Thruster No. 1: LOX mfd P =309 psia:
LOX mfd T'=-248 °F
P_. =217 psig = 232 psia.
Using the density of LOX at the average pressure in the thrusters:
Ave P = (309 + 232)/2 = 270.5 psia
p =621b/ft3 (at 270.5 psia and —248 °F).

LOX flow rate to thruster No.1:

= m from 100% venturi _ 5.9

— =1.481b,, / sec .
4 4 m

So solving equation (4),

AC _1.481b,, /sec
d — 2 .2 3
2(32.2 1b,, - ft / Ibg -s2)(309 — 232)Ibs / in.2 (621b , ft)

144 in? / ft2

—0.032 in.2

Results for the LOX side flow areas in all cold flows were plotted in figure 25.
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APPENDIX I—Fuel System Results

Figure 26 shows the fuel system performance during GRUN0036. Appendix F provides
the steady-state data and calculation results for each test.
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Figure 26. Fuel system performance during GRUNO0036.



1.1 Fuel Flow Rate Calculations

Fuel flow rates were calculated with the compressible flow equation:

i = (ACy)PD T8 )

where
A = flow area in venturi throat, in.2
C, = venturi discharge coefficient
P =inlet pressure to the venturi, psia
T = inlet temperature to the venturi, °R
R = universal gas constant, 1bgft/lb,, °R
g, = gravitational constant (32.2 Ib,, ft/Ib; s?)
Y= specific heat ratio
Z = compressibility function = P/p RT 6)

—(1+y)
D= M(l + YT_IMz)Z(V‘l) : (7)

Example (GRUNO0O038):
At 100-percent venturi:
Inlet P = 474 psig = 489 psia
Inlet T=51 °F =511 °R
Ave. fuel manifold pressure (TH No. 1-4) = 239 psig = 254 psia.

For GHe, R =386 ft Ib¢/lb,, °R and y=1.67
At 489 psia and 511 °R, py, = 0.351 lbm/ft3; using equation (6):

(489 Ibg /in.z)(144 in?/fi%)
(0.35 11b, / ft3)(386 ft-1bg /1oy, - °R)(511°R)

Note: For the GH, and GHe conditions used in this test program, Z=1 was assumed for all calculations.
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Flow through the venturi was choked at the throat (P, /P;, = 254/489 ~0.5), so M=1. Therefore,
solving for equation (7):

—(141.67)
D= 1(1 + ﬂz_l(l)z)zﬂﬁ—l) = 0.5625 .
Values of D are also tabulated in most compressible flow tables for various yand pressure ratios.

For the 100-percent venturi, with a throat diameter of 0.685 in. and a C;=0.97, its AC,; is
0.3575 in.2

Finally solving equation (5),

(1.67)(32.21b,,, - ft / Ibg - s2)
(1)(386ft-Ibg /1byy, - °R)(511°R)

i = (0.3575in.%)(4891b; / in.2)(0.5625) \/ =1.621b,, / sec .

For hot-fires with GH,, y=1.4 and R =766 lb;ft/Ib_, °R and D = 0.5787 when flow is choked
through the venturi.

Choked flow conditions were checked with the pressure ratio across the venturi:
for y=1.4, P/P,=0.53 or less creates choked flow
for y=1.67, P/P,= 0.5 or less creates choked flow,
where
P = downstream pressure, such as the fuel manifold pressure
and

P, = total upstream pressure = venturi inlet pressure.

The total fuel flow rate for the LOW thrust side was the sum of the flow rate through the 80-
and 20-percent venturies.

Note: For the hot-fires, GRUN0037 and GRUNO0O036, the fuel venturies during mainstage did not choke

(based on pressure measurements). So, values for D were found from a compressible flow table for
y=1.4 at the actual pressure ratios.
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Example (GRUNO0037):
100-percent fuel venturi:
inlet pressure, P, = 466 psig

average downstream pressure, at the fuel manifolds:

pe 307 +304 + 305 + 308

= 306 psi
4 psig

Across venturi, L = M =0.67
B (466 +15)psia

For y=1.4 at P/P,=0.67, D = 0.5523 (M=0.78), instead of D= 0.5787 for M=1.

So, D=0.5523 was used to calculate the fuel flow rate through the 100-percent venturi in
GRUNO0037.

L.2 Fuel Side AC,; Calculations

For each thruster in the engine, the flow area, AC, of the fuel side of the injector was calculated
for each test. These values were used as a reference for the hardware. Significant changes to the flow
areas of the injectors could be indications of hardware anomalies.

These flow areas were also calculated using the compressible flow equation, along with the
conditions measured in each thruster:

m

pp. | Be_ 8)
ZRT

AC, =

Assume Z = 1 for GHe or GH,.
Example (GRUNO0037):
Thruster No. 1:

fuel mfd P =307 psig = 322 psia
fuel mfd 7= 18 °F =478 °R
P.=217 psig = 232 psia

P 232

—=222-0.72 - D=0.5293 for y = 1.4
P 322

= m from 100% venturi _ 1.03 Ib,, / sec
4

=0.26 Ib,, / sec .
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Solving equation (8)

0.26 1b,, / sec

1.4(32.2 Tby, - ft / Ibs -s°)
(766 Ibg - ft / b, - °R)(478 °R)

=0.137 in.2

AC, =

(322 1bs /in.2)(0.5293)

For the cold flows with GHe, flow across the fuel side of the injector was choked, so D = 0.5625;
but for the hot-fires, D was found relative to the resulting pressure ratio across the injector.

Results for the fuel side flow areas in all cold flows (with GHe) were plotted in figure 27. Note
the change in flow area after the ignition tests were attempted. This likely occurred due to TEA-TEB
residue that built up in the fuel annuli or BLC holes. However, plenty of fuel side flow area remained to
provide appropriate hot-fire test conditions (see fig. 28). This residue on the fuel side did not seem to
pose any threat to the hardware. The decrease in fuel side AC,;/’s produced no effect on P_’s. It was
reasonable to assume that adequate fuel side flow areas still existed and venturies were still controlling
the fuel flow rate to the desired (and consistent) levels.

TH#1-4: Injectors’ Fuel Side ACy

0.250
0.200
e - - k ” Decreased after ignition tests;
< 0.150 probably due to TEA-TEB residue
= . .
= in fuel annuli or BLC holes.
=
S
< 0.100
—a— TH#1
---@-- TH#2
0.050 —a—TH#3|]
Ignition Tests Cold Flow Data With GHe Only | —e—TH#4
Nv—NC\.Iv—C\.Iw—C\IOO’CX)I\FO(!U)WO@@FN—N—N—NFNFN—
N T T T e N A Y A S T I
0016 10 16 10 6 B @ g o E F Y opox ® 9@ @ NSNS NS NSNS e
C C C C X o oc o o o C OC C C C C C £ £ £ o £ o
S 6 ©C 6 ©C 6 o (&) S O [GERSGERGENG BNG ENS BRSNS BN BRG BN GD B N D]
0.250
0.200
< 0.150
=
=
S
< 0.100
—a— TH#5
---@-- TH#6
0.050 : —a—TH#7|
Cold Flow Data With GHe Only — TH#S
AN NN AN NN N O OO0~ Y 0 I ANN T T O OO 0 AN AN AN NN N
P T T T e N Y A T T T e N
O 6B WW LW 2223 e ®0ocec o NI AAT AT AN NN T
r o oxeoe o oo @ x @ P rx®POPOC P vy rxrx e o oeooeoe o
S O o & ©C 6 O (4] S & [CANGENGENGERG BN BN BN RS EESG END BN RN
Test No

Figure 27. Fuel side AC; results.
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APPENDIX J—Ignition Test Results

Resulting chamber pressures during ignition test (GRUNO033) are shown in figure 29.
Appendix F includes the steady-state data for each ignition test (GR’31-33).
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Figure 29. Thruster chamber pressures during ignition test.
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J.1 TEA-TEB Flow Rate Calculations
The TEA-TEB flow rate was estimated with the incompressible flow equation:
i = ACyJ28pAP | ©)
where

AC ;= flow area of the TEA-TEB flow control orifices
(dia = 0.026 in., C; ~0.6 assumed)

g, = gravitational constant = 32.2 1b , - ft/lIb; - 52
AP = pressure drop across orifice, psi
p = density of TEA-TEB = 44.5 Ib_/ft> .
Example (GRUNO0033):
During ignition phase between LOX and TEA-TEB:

TEA-TEB supply pressure to engine = 693 psia (PT0651)
Average thrust chamber pressure = 45 psia

With an orifice diameter of 0.026 in. and assuming a C;=0.6, AC; was 3.186x10~4 in.2 for each
thruster ignition port.

Solving equation (9)

2(32.2 1b,, - ft / Ibg -s2)(693 — 45)lb / in.2
144 in.2 ft?

= (3.186x10™% in.2) \/ =0.036 Ib,,, / sec per thruster .
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APPENDIX K—Hot-Fire Test Results

System performance during GRUNO0O036 is shown for LOX (fig. 30), fuel (fig. 31), TEA-TEB
(fig. 32), water (fig. 33), and engine (fig. 34) systems. All systems responded as expected. Results were
similar for hot-fire GRUNOO37. Figure 35 shows the chamber pressure behavior during hot-fire. During
mainstage, chamber pressures continue to rise slightly due to increasing fuel flow rate.

The LASRE engine supply systems for GRUNOO037 is shown in figure 36. Table 13 lists the
performance results for GRUNO037 and GRUNO0036. Appendix F provides the steady-state data and
calculation results for each hot-fire test, GR’36 and GR’37.
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Figure 30. LOX system performance during GRUNO0036.
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Figure 31. Fuel system performance during GRUNO0036.
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Figure 33. Water system performance during GRUNO0036.
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Figure 34. Engine performance during GRUNO0036.



00¢ 96+ 06+ G8F 08F GZF 02+ G9F 09k GSE 0GF G¥L OVl
J/ T T T T T \ 0
/ 94 U1 8seaiou| ~ 0§
aleY MO|4 [an4 Ul 8seaIoU] \ 001
/ Aysuaq |an4 Ul asealou| \
/ ainesadwia] |an4 Ul aseaI09(] \ 05k
\— ~ oy 002
: 0S¢
00¢ <96, o06L G68L 08F GZL 0L S9L 09F GG 0GL Gvl o.io
7
N [ %
/I ] 00}
— [ - uonisod aneA fand mmw
anjeA Buiieinbal Jo asuodsal s_ 0S¢
Aq |an3] JUBISUOD TR | —1 00€
pauleIuIRW SI 4 1INJUSA U d B 7 mmw
_ , , N = umuspeng 7 gep
_ i i i — T | | 005
00c <6+ O06L S8 08F GZL 0ZF S9F 09 GSL 06GL G¥L OVl
0
1 18jupunusp [Ny 4 gz
$9sB2109( aJnjeladwa) SHY Yuel /// 09
[an4 Ul $8sB8109(] 84nSsald Sy 08
. 00}
00¢ <96+ o06F G8L 08k GZL 04 G9F 09k GG 0GL G¥L Ovl
, T 0002
~ ng ] 0082
d Muel[engd | 000
uny oc_:,a $3SB8108(] 8INSSald ~— 005's
yuel [9n4 ‘suadQ dAeA [9nd JolY I 0007
: 005

(29s) awip

or Ge 0€ Gc 0

(Bisd) °% ——

(e1sd) 4 PIN XO1——

(B1sd) o i 19N4—— ?\
/

e

SPJIN 18n4 PUE X0 —/

0}

L

PHAI XO1

08

001

0S1

00¢

0G¢

00€

0g€

ainjesadwsa) pue ainssald

Figure 35. Chamber pressure behavior during hot-fire.
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Figure 36. LASRE engine supply systems GRUNOO37.
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Table 13. Performance results from GRUNO0037 and GRUNO0O036.

Performance GRUN0037 - GRUN0036 -
Results TH#1 TH#2 | TH#3 | TH#4 \ TH#5 | TH#6 TH#7 | TH#8 | TH#1 TH#2 | TH#3 | TH#4 | TH#5 | TH#6 TH#7 | TH#8

total propellant flow rate (Ib,/s) 173 | 173 | 173 | 173 | 166 | 166 | 166  1.66 | 1.76 | 1.76 | 176 | 176 | 1.69 | 1.69 | 1.69 | 1.69
LOX mfd. P (psia) 309 | 307 | 326 | 321 | 303 | 302 | 315 | 305 | 306 | 307 | 327 | 319 | 207 | 299 | 312 | 298
LOX mfd. T (F) -248 | -253 262 | -262 | -249.94| -250 | -256.41| -256 | -246.22 -256.46 | -263.77 | -263.22 | -253.37 | -253.37 | -257.52 -257.52
h (BTWb , ) for LOXmfdP&T 362 | -406 | -423 | 423 | -37.1 | -37.1 | -39.7 | -398 | -354 | -397 | 431 | 427 | -385 | -385 | -406 | -406
Fuel mfd. P (psig)* 307 | 304 | 305 | 308 | 298 | 298 | 296 | 301 | 305 | 304 | 303 | 308 | 296 | 296 | 294 | 300
Pun at altitude (psia) 147 | 147 | 147 | 147 | 147 | 147 | 147 | 147 | 147 | 147 | 147 | 147 | 147 | 147 | 147 | 147
Fuel mfd. P (psia) 322 | 319 | 319 | 323 | 312 | 312 | 310 | 316 | 320 | 318 | 318 | 323 | 311 | 311 | 309 | 315
Fuel mfd. T (F) 18 18 8 | 18 | 31 | 31 | 3 31 10 10 10 10 23 | 23 | 23 | 23
h (BTU/Ib , ) for GH , mifd P& T | 1587 | 1587 | 1587 | 1587 | 1634 | 1634 | 1634 | 1634 | 1558 | 1558 | 1558 | 1558 | 1605 | 1605 | 1605 | 1605 |
P (psig) 217 | 210 | 209 | 214 | 205 | 200 | 198 | 202 | 218 | 210 | 210 | 212 | 205 | 199 | 197 | 201
(Convert pies to cal/mol & subtract std. values) e 1

CEANCETPCINPUT: | | L i

~ GH; h (cal/mol) -262.73 | -262.73 | -262.73 | -262.73 | -210.56 | -210.56 | -210.56 | -210.56 | -204.92 | -204.92 | -294.92 | -294.92 | -242.75 | -242.75 | -242.75 | -242.75

GH, T (K) 265.45 | 26545 | 265.45 | 26545 | 272.86 | 272.86 | 272.86 | 272.86 | 26117 | 261.17 | 261.17 | 26117 | 268.1 | 268.1 | 268.1 | 268.1
~ LOX h (cal/mol) -2713.1| -2791.2 | -2821.4 | -2821.4 | -2729.1 | -2729.1 | -2775.2| -2777 | -2698.9 | -2775.2 | -2835.6 | -2828.5 | -2753.9 | -2753.9 | -2791.2 | -2791.2
CLOXT(K) 117.57 | 115.18 | 1099 | 110.07 | 116.7 | 116.7 | 113.11 | 113.11 [ 118.77 | 113.08 | 109.01 | 109.32 | 114.8 | 1148 | 112.49 | 11249

Pc (psia) 232 | 225 | 223 | 208 | 220 | 215 | 212 | 217 | 233 | 225 | 225 | 226 | 220 | 214 | 211 | 216
MR 57 | 57 | 57 | 57 | 54 | 54 | 54 | 54 | 57 | 57 | 57 | 57 | 54 | 54 | 54 | 54

Ac/At 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2
CEA/CETPC RESULTS: L _ - _
_ Pe,ns (psia) 227 | 20 | 219 | 224 | 215 | 210 | 208 | 212 | 228 | 220 | 200 | 222 | 215 | 209 | 207 | 211
¢, thea (ft/s) 7661 | 7658 | 7657 | 7658 | 7748 | 7746 | 7745 | 7746 | 7660 | 7656 | 7655 | 7656 | 7746 | 7744 | 7742 | 7744

g IR ERA Tttt 1 1 1 1

Mc 0144 | 0.144 0.144 | 0.144 | 0.144 | 0.144 | 0.144 | 0.144 | 0.144 | 0.144 | 0.144 | 0.144 | 0.144 | 0.144

T,0as (R) 6014 6007 | 5940 5936 5933 5936 6014 6006 6005 6007 5938 5933 5931 5935
Calculations: N ?

c*actual (fts) 7509 | 7277 | 7244 | 7410 | 7420 | 7247 | 7178 | 7316 | 7408 | 7148 | 7148 | 7213 | 7288 | 7085 | 7017 | 7153
C* efficiency % 98 95 95 97 96 94 93 94 97 93 93 94 | 94 91 | 9 92

K.1 Performance Calculations
For the hot-fires, performance data included MR, actual C* values, and C* efficiencies.
K.1.1 Mixture Ratio
For each thruster,
MR =" (10)
rity

where

= oxidizer flow rate, 1b, /sec

ny
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Example (GRUNO0037):
For thruster No. 1: m, = 1.48 1b,_/sec and my =0.26 Ib_/sec

Solving equation (12)

MR= 1B _s57
0.26

K.1.2 Actual C* and C* Efficiency

C* is defined as the characteristic velocity of the resulting combustion gases:

* P ’At -8
Cactual = C’-ns . - > (1)
m, +m f
where

P, = nozzle stagnation pressure (psia)

A, = chamber throat area (in.2)
g, = gravitational constant = 32.2 1b_, ft/lb; s2.

In order to calculate the actual C* correctly, P, . was determined. This stagnation pressure
would be less than the P, measured up near the injector due to Rayleigh losses from the injector to the
nozzle stagnation point (where the chamber contour starts to converge). In addition, there was a theoreti-
cal C* value that was associated with specific propellant combinations, P.’s and MR’s. This theoretical
C* was the velocity that should result if the design and operation were perfect, and the combustion gases
experienced no energy losses (such as Rayleigh losses or heat losses to the coolant). By comparing the
theoretical value to the actual value, the C* efficiency was determined to provide a relative idea of each
thruster’s performance.

A rocket performance code called “CETPC” was used to determine P, . and the theoretical C*
values. CETPC is also known as ODETRAN and CEA—they are all basically the same FORTRAN code
(developed by Gordon and McBride at NASA’s Lewis Research Center). A computer code called

MIPROPS was used to find the specific thermodynamic properties of oxygen and hydrogen.
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Inputs to CETPC include:

* LOX and fuel inlet enthalpies

* LOX and fuel inlet temperatures

* P (psia) as measured at the injector end
* MR

e A./A, = chamber’s contraction ratio

* A .= chamber area at the injector end

* A, = chamber throat area.

Example (GRUNO0037):
Thruster No. 1:
Inlet enthalpies have to be input in cal/mol:
LOX mfd. pressure = 309 psia
LOX mfd temp. = -248 °F
hy,=-36.2 BTU/b,, .

Convert this value to cal/mol:

hy, = 362 51Y[ 22317¢ (32g) 252.2¢al ) _ 645 45 cal / mol |
2 b, (BTU/Ib,, Amol A 10557

Subtract the enthalpy for O, at standard conditions (14.7 psia, 78 °F)
hoz,std =2070.5 cal/mol
hy, =-642.45 —2070.5 = -2713 cal/mol.
LOX inlet temperature must be input in K: 7, = (-248 + 460)/1.8 = 117.8 K.
Fuel mfd. pressure = 322 psia
Fuel mfd. temperature = 18 °F

From MIPROPS: hH2 = 1,587 BTU/Ib,, .

Convert this value to cal/mol :

by, = 1587 STU[ 2231 /¢ (Zg) 252.2¢al ) _ 1960 3 cal / mol .
2 b, | BTU/Ib,, Amol \ 1055]
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Subtract the enthalpy for H, at standard conditions:
th,std =2,024.3 cal/mol
hy=1,760 —2,024.3 = -263.99 cal/mol .
Fuel inlet temperature must be input in K: Tf: (18+460)/1.8 = 265.55 K.
The rectangular cross-sectioned chamber measured:
At the injector end: 5.015 in. X1.5 in.
At the throat: 4.995 in. X 0.357 in.

A,=(5.015)(1.5) =7.5225 in.2
A, =(4.995)(0.357) = 1.7832 in.?

Based on the output from CETPC, when the chamber contracts, (A./A,=4.2, M = 0.144) Pinj/P =
1.0234, where Pinj = P, measured at the injectorend and P=P_ ..

So,
232 psia .
= =227psia .

ens = 0234 P

Solving equation (11)
-2 .2 2
C:ctual _ (2271bg /in.")(1.78 in.")(32.2 Iby, - ft /by -5 )=7509ft/sec |
(1.48 + 0.26)Ib,,, / sec

From CETPC,

Ct*heo = 7661 ft/sec.As aresult,

C: _ Calctual _ 7509

ici = = =098 .
fficiency Ct*heo 7661

Output from CETPC is shown in table 14.
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Table 14. Output from CETPC program.

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM
COMPOSITION DURING EXPANSION FROM FINITE AREA COMBUSTOR
PINJ = 232.0 PSIA
AC/AT = 4.2000
CASE NO. 1
CHEMICAL FORMULA WT FRACTION ENERGY STATE TEMP
(SEE NOTE) CAL/MOL DEG K
FUEL H 2.00000 1.000000 -263.000 L 265.50
OXIDANT O 2.00000 1.000000 -2713.000 L 117.60
0/F= 5.7000 PERCENT FUEL= 14.9254 EQUIVALENCE RATIO= 1.3924 PHI=1.3924
INJECTOR INF CHAM  THROAT CN RATIO
PINJ/P 1.0000 1.0115 1.7499 1.0234
PINF/P .98864 1.0000 1.7300 1.0117
P, ATM 15.787 15.607 9.0214 15.426
T, DEG K 3346.63 3345.24 3179.10 3341.63
RHO, G/CC 7.2715-4 7.1910-4 4.4315-4 7.1172-4
H, CAL/G -91.602 -91.602 -370.67 =-97.736
U, CAL/G -617.36 -617.21 -863.67 -622.63
G, CAL/G -15601.8 -15601.3 -15110.1 -15590.7
S, CAL/(G) (K) 4.6346 4.6364 4.6364 4.6364
M, MOL WT 12.649 12.648 12.815 12.651
(DLV/DLP) T -1.03540 -1.03548 -1.02858 -1.03533
(DLV/DLT) P 1.6496 1.6512 1.5515 1.6491
CP, CAL/(G) (K) 2.8004 2.8059 2.5692 2.8013
GAMMA (S) 1.1328 1.1328 1.1321 1.1327
SON VEL,M/SEC 1578.6 1578.3 1528.2 1577.2
MACH NUMBER .000 .000 1.000 .144
PERFORMANCE PARAMETERS
AE/AT 1.0000 4.2000
CSTAR, FT/SEC 7661 7661
CF .654 .097
IVAC, LB-SEC/LB 293.5 1011.6
ISP, LB-SEC/LB 155.8 23.1
GR37TH1.0OUT

Note: Theoretical C* was calculated in CETPC relative to theoretical T,

as» DUt some heat was actually

lost to the coolant in the combustion chamber—making the actual Ty lower than the theoretical value.
To adjust Tyas relative to the heat picked up by the coolant:

ES
Ctheo =

A/ gcyRTc,ns

2

Y y+1

Q = (meAT)HZO
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r+l
y-1

Tc,ns =

Tga1S at nozzle stag. point (12)
(heat gained by coolant = heat lost from gas) (13)



ATy, = 0 (14)

S8 iy +11p)C gas
Actual Tga1S = theo Tga1S - ATgas (15)
Cj tual T,,, — AT,
Corrected (*  _ theo \/ac ual fgag gas (16)
theo

yactual Ty

However, ATHZO is the temperature rise by the coolant in each thruster between the injector and
the nozzle stagnation point. In the LASRE program, only the total AT picked up by the coolant through
the thrusters and the fences/ramps was available. The AT up to each thruster’s nozzle stagnation point
would be significantly smaller, creating little effect on the theoretical C* value. Therefore, corrections
for heat loss were not performed for this program. Actually, in the LASRE program, the C* efficiencies
were only meant for comparisons between thrusters and hot-fire tests, not true performance evaluation,
so this correction was not important.
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APPENDIX L—Flight Configuration Test Results

Figure 37 shows the transient data for the LOX and fuel systems. Transient plots compare
GR’35: ground cold flow prior to ground hot-fire; GR’36: first ground hot-fire; GR’37: second ground
hot-fire; and FLT 49: flight cold flow. Data shown for all tests starts at =5 sec prior to “SS.” Flight
configuration testing produced results similar to ground tests.

Transient data are shown for the water system (fig. 38) and engine system (figs. 39 and 40). The

water system, engine and TEA-TEB systems responded appropriately and consistently for cold flows
and hot-fires in the ground and flight configurations.
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Figure 37. LOX and fuel—transient data.
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