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TECHNICAL MEMORANDUM

ANALYSIS OF GRAPHITE-REINFORCED CEMENTITIOUS COMPOSITES

1.  THE PROBLEM

1.1  Introduction

In research on composite beams, Biszick1 noted that the transform section method did not
accurately predict the behavior of the test articles being considered. Biszick documented that a highly
efficient structure; i.e., weight and strain energy, could be developed using a matrix with a very low
Young’s modulus (E1) and reinforcement with a very high Young’s modulus (E2). These test articles
were cementitious beams reinforced with a graphite mesh. The graphite mesh was used in the same way
as steel mesh in conventional reinforced concrete; i.e., the reinforcement reacts on the tensile loads,
while the concrete reacts on the compressive loads. Significant differences should be noted between a
graphite mesh and a similar steel mesh. First, the graphite mesh has no bending or compression stiffness.
The mesh drapes, if not supported, and does not resist a compressive force; i.e., cloth. Second, the
graphite appears to be saturated by the cement (matrix), such that an adhesive bond forms between the
cement and graphite. The cementitious mix used in the test articles was also unique and exhibited ductile
properties. Biszick’s research showed conclusively that maintaining a high elastic modulus ratio (η),
i.e., Efiber/Ematrix, between the matrix and the reinforcement results in efficient composite structures. It
follows then, to fully utilize this discovery, the analytical methods must be understood and developed.

This Technical Memorandum (TM) investigates the analytical methods for the analysis of
graphite-reinforced cementitious composites where high η’s are employed. A sample problem will
demonstrate the transform section method of analysis. A finite element model will then be developed
and the results compared to the transform section method of analysis. The errors associated with the
transform section method and high η’s will be demonstrated. Alternative methods of analysis will then
be investigated. The rule of mixtures2–4 will be applied to a graphite-reinforced cementitious composite
to calculate effective material properties. These properties will be introduced into the transform section
method and the results compared to finite element methods and beam testing. Laminated composite plate
theory will then be discussed and applied to the graphite-reinforced cementitious composite. It will be
shown that laminated plate theory for composites can successfully be applied to this type of composite.
Extensive experimentation is used to develop the material properties used in the laminated plate theory.
Graphite-reinforced cementitious composite beams are analyzed using classical composite methods and
compared to finite element methods and experimental results.
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1.2  Problem Statement

Section 1.2 illustrates a problem with the analysis of a composite beam that has a high elastic
modulus ratio. First, the expression for the moment of inertia (I) is derived in terms of η. The moment
of inertia is then used to calculate the deflection of a beam subjected to pure bending. The deflection of
the beam is calculated as η ranges from 1 to 1,000. The analysis is then repeated using a finite element
model. The conclusion is made that the transform section method of analysis is not accurate for η > 20.

1.3  Composite Beam

Figure 1 illustrates a beam composed of two different materials. Since the beam is subjected to
boundary conditions and loads to produce pure bending between the supports (fig. 2), the transform
section property method may be used to determine the deflection in the beam for each of the load cases
described in table 1. These results can be compared to those obtained from a finite element model.5

E2

E1

E2

1 in.

0.25 in.

0.25 in.

0.5 in.

0.25 in.

Figure 1.  Beam cross section.

10 in.

Force Force

a L a

y

x

Figure 2.  Beam in pure bending.
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3.00E+07

3.00E+07

1

2

3

4

5

6

7

8

9
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12
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1

2

4

10

14

20

30

40

80

100

120

200

220

300

400

500

600

1,000

0.347 

0.694 

1.388 

3.470 

4.858 

6.940 

10.410 

13.880 

27.760 

34.700 

41.640 

69.400 

76.340 

104.100 

138.800 

173.500 

208.200 

347.000

0.0289 

0.0542 

0.1048 

0.2566 

0.3578 

0.5097 

0.7627 

1.0157 

2.0278 

2.5338 

3.0399 

5.0640 

5.5701 

7.5942 

10.1244 

12.6547 
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25.3057

9.22722E–03
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1.04904E–02

1.05028E–02
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1.05252E–02

1.05277E–02
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1.05334E–02

1.05352E–02

1.05364E–02

1.05372E–02

1.05377E–02

1.05387E–02

Case E1 E2 η Flange Ix Deflection

Table 1.  Loads and deflections for transform section method.

1.4  Analysis Using the Transform Section Method

The equation for the deflection (ymax) of a beam (fig. 3) in pure bending can be derived using
the elastic curve equations and the boundary conditions:

y
Pax

E I
L xmax = −( )

2 1

  . (1)

x

y

a x

M

V

Force

Figure 3.  Free-body diagram.
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It should be noted that the middle section of the beam (A2) is independent of η. As η increases,
section A2 becomes insignificant. The expression for I can be written in terms of η as follows:

The effective value of the moment of inertia can be calculated using the transform section
method;6 A1 and A3 are made from a material with properties of E2. A2 is made from a material with
properties of E1. The original cross section of the beam (fig. 4) is modified per the transform section
method. The moment of inertia is then calculated from the new geometry and summarized below:

•  Material properties of the composite beam:  E1 = 360 × 103 lbf/in.2, E2 = 30 × 106 lbf/in.2

•  Transform section ratio:  η = E2/E1, η = 83.33

•  Width of the composite beam:  β = 0.347 in.

•  Moment of inertia calculation:

I y dy I y dy I y dy

I I I

I I I I I

1
2

0 25

0 5
2

2
0 25

0 25
3

2
0 5

0 25

2 2 2

1
4

2
4

3
4

1 2 3
4

3 645 10 1 0416 10 3 645 10

1 045 0 004 1 045

= = =

= × = × = ×

= = =

∫ ∫ ∫−
−

− − −

ηβ β ηβ

ηβ β ηβ

.

.

.

.

.

.

. . .

. . .in. in. in.

= + +  = 2.112 in.

x

y E1

E3

η ×

A1

A2

E2

β

β

A3

Figure 4.  Transform section geometry.
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I

I

= × + × + ×

= × + ×

− − −

− −

3 645 10 1 0416 10 3 645 10

7 29 10 1 0416 10

2 2 2

2 2

. . .

. . .

ηβ β ηβ

ηβ β (2)

Let β = 0.347 in., then

I = × + ×− −2 53 10 3 6 102 3 4. .η  in. (3)

Now this expression can be substituted into the elastic curve equation:
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so that

y
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E E

L
max =

+




0 0506 0 0072 22 1. .

. (6)

Equation (6) is used in a Microsoft® Excel spreadsheet to calculate the deflection for each case.
As shown in table 1, E2 remains constant while E1 decreases. As the Young’s modulus ratio (η)
increases from 1 to 1,000, the deflection value increases to 0.015 in. and then becomes essentially
constant.

1.5  Analysis Using the Finite Element Method

A finite element model of the beam was generated using the MSC/Nastran finite element code.5

The model is composed of quad4 plate elements with loads and constraints (fig. 5). The model returned
a maximum deflection of 9.19 × 10–3 for η  = 1. The results of the finite element model can be compared
to the results from the elastic curve equation for the same case:

Error%
model equation

model
=

−
× =

−
× =

Y Y

Y
100

0 00919 0 00922
0 00919

100 0 39%
. .

.
% . % . (7)
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Figure 5.  Finite element model.
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9.22722E–03
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Case E1 E2 η Ix Model
Error
(%)Deflection

9.19E–03

9.78E–03

1.01E–02

1.02E–02

1.02E–02

1.02E–02

1.04E–02

1.06E–02

1.19E–02

1.29E–02

1.39E–02

1.84E–02

1.96E–02

2.42E–02

2.96E–02

3.44E–02

3.85E–02

4.86E–02

–0.39

–0.66

–1.10

–2.01

–2.30

–2.24

–1.29

0.51

11.88

18.16

24.15

42.76

46.26

56.54

64.44

69.35

72.59

78.31

Table 2.  Results of the finite element analysis.

The analysis of the first case indicates that the transform section method and the finite element
model are in good agreement. The finite element model was run for each of the 18 cases. The results
were tabulated in the Excel spreadsheet (table 2).
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This sample problem illustrates the current state of the art for the analysis of graphite-reinforced
cementitious materials. This analysis leads to the conclusion that the transform section method of analy-
sis is not adequate for the analysis of graphite-reinforced cementitious composites. The literature search
included in section 2 was undertaken to determine an alternate approach.

The deflection values from the two methods of analysis are plotted as η increases from 1 to 80.
Figure 6 illustrates that the transform sections method of analysis results in a constant deflection as η
approaches 20. The finite element model and the transform section method are in reasonable agreement
until η reaches 40. Beyond 40 the significant differences in the analysis methods are obvious.
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Figure 6.  Comparison of transform section method to finite element methods.
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2.  LITERATURE REVIEW

Section 2 provides the background necessary to develop an understanding of the process required
to analyze graphite-reinforced cementitious composites. The basic theories used in the analysis are
discussed to provide context for subsequent derivation. The material presented here is intended to give
the reader a sense of direction for this TM.

2.1  Introduction

A fiber-reinforced material consists of two components: fiber and cement. The cement fills the
space around the fibers and keeps them in position. The hardened cement adheres to the fibers, allowing
a transfer of load. The type of fiber reinforcement may consist of a variety of materials: steel bars, glass
fabric, ceramic whiskers, or carbon strands, to name a few. There are many types of cement as well,
including epoxy, polyesters, aluminum alloys, and cementitious materials. In general, the cement mate-
rial is isotropic while the fibers are longitudinal components that can react to forces along their axes.
The fibers are typically much stronger and stiffer than the cement. The material properties of the fiber-
reinforced composite are typically orthotropic in nature. The elastic properties of the composite depend
on the properties of its constitutive materials, the mix ratio of the components, and the orientation of the
fibers.

The literature associated with composite analysis and development covers a phenomenal range
of applications, from the International Space Station to the common kitchen sink. However, the one
common and elusive goal of researchers is to develop a method to predict the elastic properties of a
composite from the properties and geometry of the constitutive materials. The purpose of this literature
search is to determine which methods will most likely work for the graphite cementious materials being
considered in this TM.

2.2  Structural Engineering Approach

The structural engineering approach is illustrated in the transform section method of analysis
(sec. 1.3). The most common form of the equation is explained in detail by Beer and Johnston.6 This
approach is often associated with the analysis of steel bars embedded in a concrete matrix. Allen and
Haisler7 modify the approach in a concept referred to as the modulus weighted section properties. In this
approach, the beam is divided into discrete homogeneous parts (fig. 7). The modulus weighted section
properties are then defined in terms of the Young’s modulus ratios as follows:
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Figure 7.  Composite cross section for weight modulus properties.

This method of determining the section properties for a composite beam is considerably more
complex than methods described by Beer and Johnston.6 However, the elastic modulus ratio (η = E2/E1)
governs this equation, and as the value of η increases, the accuracy of the method decreases.

Balaguru2 developed another interesting approach to the analysis of composite beams.
Ferrocement is a composite material, consisting primarily of several layers of wire or fiberglass mesh
embedded in a cementitious matrix. Balaguru2 developed an analytical model of the composite beams
from the stress-strain curves of the constitutive materials. The model uses section properties calculated
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from the transform section method. However, Balaguru takes into account the nonlinear properties of the
materials. As the weaker of the materials becomes nonlinear, Young’s modulus is recalculated. The new
value is used to determine the section properties for the nonlinear load. Balaguru’s methods seemed
promising for the analysis of the composite considered here; particularly, since the method had been
used for the analysis of glass fibers with a cementitious matrix. However, on further investigation,8 it
was found that the analytical method suffered from the same limitations as those encountered with the
transform section method. Nonetheless, Balaguru’s methods were successfully used with a modified
transform section method (sec. 4.13) to determine the deflections of a composite beam considered here.

 The common theory used for the structural engineering approach is the transform section
method. This approach is the primary cause of “the problem” discussed in section 1. Further investiga-
tion into the structural engineering approach would be unavailing.

2.3  Mechanics of Materials Approach to Composites

The mechanics of materials approach to composites is fundamentally different from the
structure’s approach discussed previously. This approach is based on the mix ratio (volume fraction)
between the fiber and cementitious materials. The mechanics of materials approach is often referred to
as the rule of mixtures for composites. The goal of this theory is to determine the “effective” elastic
material properties: Young’s modulus (E1 and E2), shear modulus (G12), and Poisson’s ratio (ν12) from
the material properties of the fiber and cementitious material. Numerous examples for the mechanics of
materials approach can be found in the literature,9,10 and the method is explained in detail in section 4.
The literature is unanimous2,9,10 in declaring this method accurate for determining the effective material
property E1, provided the fibers are continuous and aligned in the direction of the load. The remaining
material properties, E2, G12, and ν12, may not be accurately predicted by the rule of mixtures. Although
Jones10 provides detailed and convincing derivations for these material properties, he points out several
assumptions in the theory that would lead to errors in the calculation of the values. In addition, Jones10

strongly points to the need for experimental data to verify the results. Balaguru4 provides the equations
to determine the value of E1; however, he chose not to address the remaining properties. The literature
contains numerous variations on the rule of mixtures theory. These variations attempt to correct the
deficiencies in the theory.

Halpin-Tsai,9,11 for example, made significant contributions to the rule of mixture methods by
developing the Halpin-Tsai equations:

E E V E V1 ≅ +fiber fiber matrix matrix
(12)

ν ν ν12 ≅ +fiber fiber matrix matrixV V (13)
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The measure of reinforcement (ς) depends on the boundary conditions within the composite and
is an empirically derived value for the specific composite. Jones10 provided sufficient evidence that these
equations are accurate, provided ς is available for the composite being considered. However, no data
were available for graphite-reinforced cementitious composites.

Another promising variation on the rule of mixtures method is provided by Krenchel.3 Krenchel
used an equilibrium approach that considered reinforcements in both the x and y directions. The methods
provided by Krenchel were applied to the composite considered here. The ply angles ψ1 and ψ2 are
measured from the direction of the load. The β term represents the volume fraction for the fiber. The k
term is given by k = 1 1 2– / ( –β νcomposite, and must be estimated since vcomposite is not known. The
following equations are then solved simultaneously to determine Ecomposite:

•  Stress in direction of force –x:

E E k E

E

x x y x y

x y

composite matrix matrix fiber

fiber

ε ε ν ε β ψ ε ψ ε ψ

β ψ ε ψ ε ψ

= +( ) + ( ) ( ) + ( )











+ ( ) ( ) + ( )











cos cos sin

cos cos sin

1
2

1
2

1
2

2
2

2
2

2
2 (16)

•  Stress in transverse direction –y:
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•  Poisson’s ratio:
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The Krenchel approach provides significant promise because it considers the loads and forces
in both directions. His equations were solved for the example considered in section 4.6 and returned
correct values for E1 and E2 (app. A). However, the shear modulus (G12) returned the same value as the
previous methods. Additionally, Krenchel had no verification data for the shear modulus calculations.

In summary, it can be said that the mechanics of materials approach will provide a set of effec-
tive material properties for a fiber-reinforced composite. Balaguru4 and Krenchel3 applied the method
for fiber-reinforced cementious materials. Krenchel’s methods can be manipulated to provide E1 and E2
for a composite. However, the literature indicates that estimates of the shear modulus and Poisson’s ratio
were questionable. Researchers were unanimous in their endorsement of establishing an experimental
database for any composite being characterized for the first time.

2.4  Experimental Methods

The literature search for experimental methods concentrated on the standard test methods pub-
lished by the American Society for Testing and Materials (ASTM). Two ASTM standards described the
possible geometry of a tensile test specimen. ASTM Standard D 30395 recommended a tensile test
specimen with bonded tabs while ASTM Standard E812 established the dogbone geometry. The purpose
of both configurations is to provide a strong grip area, causing the specimen to strain and break in the
center. Bonding grip tabs to the cementitious specimens were found to be difficult and impractical. The
grips used on the tensile test machine limited the thickness of the tabs. One specimen with tab ends was
successfully tested. However, the machined dogbone specimens (sec. 3.3) were much easier to produce
and worked well. The ASTM recommendation to use extensometers to measure the strain was a signifi-
cant impact to the tensile test. The extensometers were found to be unreliable because the knife blades
would not grip the test article properly. Strain gauges provided a much more reliable method for strain
measurement (sec. 3.5). Strain gauge installation was achieved by following the recommendations
of Measurement Group Bulletin 309D.13 In addition, Measurement Group Tech Tip TT–61114 was
reviewed for applicable information. Tech Tip TT–61114 appears more suitable for large concrete
structures.

Several experimental procedures for determining the shear modulus were offered by Jones.10

The most compelling was producing a specimen with the fibers running at a 45° angle, and testing the
specimen as a tensile test. Jones10 provides the necessary equations to determine the shear modulus.
However, ASTM standard D 5379–9315 recommended an Iosipescu shear test for determining the shear
modulus. On further investigations, it was found that the ASTM standard also had problems. Conant and
Odom16 identified numerous problems with the ASTM/Wyoming Iosipescu test fixture. The most
significant was the tendency for the specimen to twist during testing. They made improvements to the
design and termed it the Idaho shear test fixture. Ifju17 describes a serious inadequacy in the instrumen-
tation recommended in the ASTM standard.15 Ifju18 demonstrated that by using a strain gauge rosette,
which covered the entire shear area, the accuracy of the test could be ensured. In addition, Ifju showed
that by placing these gauges on each side of the specimen, the effects of twisting could be removed.

It was concluded from the literature search that the ASTM standard tensile5,12 and shear test15

for a composite material were the most desirable methods for determining the material properties
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for a composite material. Interestingly, no reference was found to these tests being applied to graphite-
based cementitious composites.

2.5  Laminated Plate Theory

Halpin, Jones, and Tsai9–11 each considered the determination of the composite material proper-
ties as an intermediate step in the analysis of a composite. The next logical step is to use these effective
material properties to develop a laminated composite plate. Gurdal19 pointed out that a significant
advantage of a composite material is the ability to optimize the geometry of the fibers for a given load-
ing condition. Krenchel’s3 equations provided a crude means to rotate fibers in a cementitious matrix.
However, his work was limited in that it assumes each layer will have the same geometry. The literature
search failed to find an example of the laminated composite plate theory being applied to a fiber-
reinforced cementitious composite.

The laminated plate theories provided by Jones10 et al.9,11,20 each contained similar derivations
and arrived at the same equations for determining the effective material properties of a laminated plate.
However, these authors each chose different methods to solve this complex system of equations. As
a result, there is a significant difference in the final effective properties determined by the authors.
Because of these conflicting results, the laminated plate theory is investigated. The equations are
arranged in such a way as to allow an exact solution to be determined. In addition, Jones et al. developed
separate solutions, depending on whether the laminated plate was symmetric or nonsymmetric in nature.
It is not necessary to make that distinction for the equations developed here. As shown by Nettles,20 the
laminated composite plate theory can be used to determine the deflections, stresses, and strains for the
multilayered composite plates. However, for complex loads or geometry, these methods are difficult
to apply. The finite element methods offer an opportunity to analyze complex layups and geometry.

2.6  Finite Element Modeling

Matthews21 illustrated that finite element analysis is applicable to composite materials, provided
the user adequately represents the properties and layup of the plates. MSC/Nastran22 was chosen as the
finite element code because of the layered composite element capabilities. The example problem pro-
vided by Nettles20 was analyzed using the finite element model. MSC/Nastran defined the required
material input and the equations from laminated plate theory were used to generate the input data
for the finite element model. Although the literature contains references to finite element modeling
of fiber-reinforced cementitious beams, there was no reference for a multilayered plate.
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The constituents of the mix were each weighed prior to the mixing process (fig. 8). The K–25
microbubbles were then added to the cement in small amounts and stirred by hand. Care was taken not
to break the microbubbles. The mixing process was judged complete by its color. The latex, fortifier,
and half of the water were then poured together repeatedly to ensure a thorough mixing of the liquid
ingredients—a very important step. It was found that the consistency of the cementitious matrix was
smooth and creamy when the latex and fortifier were mixed with water before they were added to the
dry ingredients. If the latex and fortifier are added separately, the consistency of the mixture is lumpy
and coarse.

Table 3.  Ingredients of the cementitious mixture.

3.  MATERIAL PROPERTIES TESTING

The process of preparing and testing the tensile and shear specimens is described in section 3,
along with details of mixing and placing the cementitious materials. The specimen geometry is briefly
discussed and presented. The process of producing a graphite-reinforced composite plate is then
described, followed by a unique method of machining the plates into tensile and shear specimens. The
use of several types of extensometers and strain gauges is demonstrated for the tensile test specimens.
A specialized Iosipescu strain gauge is described for the shear test. The tensile test procedure and the
results from six test specimens are provided. The shear test procedure and the results for two shear test
specimens are also included.

3.1  Mixing and Placing Cementitious Composites

Mixing and placing the cementitious matrix material is a very important aspect of specimen
development. The cementitious mix used in this investigation was developed for use in the American
Society of Civil Engineers’ concrete canoe competition. The mix development is not a part of this
investigation. Table 3 defines the mix used in all specimens.

K–25 Microbubbles

Portland cement

Latex

Fortifier

Denatured water

218

558

310

150

~620

Cementitious
Mixture Grams
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The liquid ingredients are then mixed with the cement and microbubbles. The remaining dena-
tured water (≈50 percent of the original weight) is added until the mixture reaches the proper consis-
tency. The cementitious mixture should be smooth and creamy with the consistency of warm butter
(fig. 9). A mixture with too much water will leak out of the mold, leaving voids in the specimen. A
mixture that is too dry will not “flow” around the graphite mesh, weakening the bond between the
matrix and the reinforcement. In addition, a dry mixture will tend to displace the graphite as the mixture
is pushed through the mesh.

Figure 8.  Tools used for mixing and weighing ingredients.

Figure 9.  Cementitious mixture with proper consistency.
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Experience indicated that the best opportunity for reducing the specimen porosity was during
the placement process. The cementitious mix was added to the mold in small amounts. The thin layers
of cementitious mix were slowly “worked” into the molds and graphite mesh. Working or floating the
cementitious mix caused the air bubbles to rise to the top, and porosity was eventually reduced
to acceptable levels.

3.2  Tensile and Shear Specimens

Tensile testing is used to determine the composite material properties E1, E2, and ν12. These
properties are needed to complete the compliance matrix (sec. 5.3) for an orthotropic material:
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The first step in the process is to determine the size and shape of a tensile test specimen for an
orthotropic composite material. The ASTM provides standards for tensile testing for a wide variety of
materials. A search of the ASTM database12 provided a number of testing standards for materials similar
to the considered composite. The mutual goal of these test methods is to develop a test specimen that
provides tensile strain data, modulus of elasticity, and Poisson’s ratio. ASTM Standard E8–99, “Standard
Test Methods for Tension Testing of Metallic Materials,”12 establishes the dogbone configuration for the
tensile test specimen, as shown in figure 11.

Figure 10.  Specimen with high porosity.

Numerous attempts were made to remove air from the final mix before it was poured. Air in the
mix was apparent by the high porosity seen in some of the specimens during finishing and sanding (fig.
10). The mix was placed in a vacuum bottle with a small vacuum applied (fig. 8). This process should be
considered marginally successful. Too much vacuum pressure caused the mix to splatter and spill in the
vacuum bottle. Reducing the vacuum to levels that eliminated the splatter had little effect on the amount
of air in the mix. The mix was placed on vibrating and shaking tables, causing air bubbles to rise to the
top of the mix. However, it tended to separate the mix (liquids came to the top) such that some remixing
was necessary before placement.



17

This test method employs small specimens that have a reduced cross section at the center of their
length to avoid failure in the grip area. The transition from the full width of specimen to a reduced
section at the center is gradual to minimize stress concentrations. ASTM Standard D 638–99, “Standard
Test Method for Tensile Properties of Plastics,”5 demonstrates the use of the dogbone specimen for
reinforced composites, including orthotropic laminates. A unique characteristic of this composite is the
relatively wide spacing of the graphite tows. The mesh contains eight yarns per inch in both axial and
transverse directions (8 in. by 8 in. weave). Reducing the width of the gauge section limits the number
of graphite yarns in the tensile test. A decision to hold the gauge width to 1 in. made the specimen
geometry dimensions similar to the type III specimen of ASTM Standard D 638. In each specimen
geometry, the configuration is determined by the desire to produce failure in the gauge section without
inducing stress concentrations in the gauge section. The specimen length is substantially longer than the
width to minimize the bending stresses due to minor grip eccentricities. The final specimen configura-
tion is analogous to the specimens described in the ASTM standards,5,12 with the exception that the
gauge width was 1 in.

The geometry of the shear specimen is established in ASTM D 5379–93, “Standard Test Method
for Shear Properties of Composite Materials by the V-Notched Beam Methods.”15 This test is often
referred to as the Iosipescu shear test. Figure 12 illustrates the geometry of the shear test specimen.

Figure 11.  Dogbone configuration.
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Figure 12.  Shear test specimen.
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3.3  Tensile Specimen Production

Specimens were made in a plexiglass mold designed to place the graphite mesh at the center of
the laminated composite. As shown in figure 13, the graphite was placed in tension to prevent the weight
of the cementitious mixture from pushing the graphite toward the bottom of the mold.

Figure 13.  Plexiglas mold with graphite tensioning device.

The cementitious mix was floated to the top level of the bottom spacer and a sheet of graphite
mesh was placed over the bottom spacer. The graphite tensioning device was then installed. The top
spacer was added and cementitious mix was floated to the top of the spacer. The tensioned graphite mesh
was trapped between two layers of the cementitious mix. The composite was allowed to cure at room
temperature for at least 21 days before the mold and tensioning device was removed. Even though mold
release agents were used, it was necessary to twist and flex the plexiglass to remove the specimens
without breaking them. After the specimens were removed from the molds, the graphite was trimmed.
The plexiglass side of the specimen had a smooth finish, while the top of each specimen had a coarser
texture. A bandsaw was then used to cut the “cookie-sheet” specimen into 2-in. by 14-in. strips for
machining.



19

An undesirable aspect of the dogbone geometry is that it requires machining of the composite
laminate. Laminated composites can be difficult to machine;2 delaminations, notches, and uneven
surfaces can result from inappropriate machining methods. In an effort to fix edges damaged by a
milling machine, it was found that a bandsaw could be used to cut the cementitious and graphite com-
posite. The cuts were smooth and notch free. A dogbone specimen was then cut out using the bandsaw.
Taking the machining process further, it was found that a router would cut a smooth radius on the
specimen (fig. 14).

Figure 14.  Router used to machine dogbone specimens.
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Figure 15.  Template used for machining specimens.

Figure 16.  Machined dogbone specimen.

The router left the edges smooth and notch free. On further investigation, it was learned that
a template, shown in figure 15, used with a table-mounted router, provided an excellent method
of machining the dogbone specimens. A specimen configured with this template is shown in figure 16.
The specimen has a 5-in. gauge length, a 1-in. gauge section width, and a 14-in. length.
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As previously mentioned, the top side of the specimen had a coarse texture. The textured surface
made it difficult to attach instrumentation. A flat backing plate equipped with fine grit sandpaper, shown
in figure 17, was used to finish the top surface of the specimen. This process was also used to ensure that
the graphite mesh was in the geometric center of the specimen. Occasionally, finishing the top surface of
the specimen resulted in the top layer being thinner than the bottom. In such a case, the bottom layer was
sanded to the same thickness as the top. Using shimming material as a guide ensured that the top and
bottom layers were the same thickness (fig. 18).

Figure 17.  Flat plate used to polish surface.

Figure 18.  Edge view of finished specimen.
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3.4  Shear Specimen Production

The geometry of the shear specimen was difficult to machine because of the small radius at the
base of the notch. Designing a router blade with a cutting diameter of 0.05 in. solved the problem. A
router template was then machined to the dimensions specified in the ASTM standard15 (fig. 19). Shear
test specimens could then be machined using a router and table (fig. 20) in the same manner as the
tension test specimens.

Figure 19.  Shear specimen router template.

Figure 20.  Shear specimen router table.
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The router machines the shear specimen, leaving the edges smooth and the dimensions within
specification (fig. 21). The top surface of the specimen requires sanding for a smooth finish and allows
adjustment of the thickness if required.

Figure 21.  Shear test specimen.

3.5  Tensile Specimen Instrumentation

The instrumentation for the tensile test specimen must simultaneously measure the longitudinal
and transverse strain. The ASTM standards recommend using extensometers,5 noting that strain gauges
provide a viable alternative. However, proper techniques for mounting strain gauges are crucial to
obtaining accurate data.13

Instrumentation of the specimens became a significant challenge to successful testing. Three
types of extensometers were available during testing. The 2-in. gauge length was used for axial strain
measurement (fig. 22).

Figure 22.  Extensometer with a 2-in. gauge length.
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The extensometer was attached to the edge of the test specimen. The data were compared to the
axial strain gauge data. Plots of the strain gauge and extensometer data for the axial direction were in
good agreement (fig. 23), indicating that the strain gauge application methods were acceptable. The 1-in.
gauge length was intended for transverse strain measurement (fig. 24). This extensometer was attached
to the face of the test specimen. However, the thin specimen did not have adequate stiffness to support
the weight of the extensometer. The instrument appeared to deflect the specimen, causing the knife
edges of the extensometer to lose contact with the specimen surface. As a result, the data from the
transverse extensometer did not correspond to the data from the transverse strain gauge (fig. 25).
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Figure 23.  Axial strain gauge and extensometer.
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Figure 24.  Extensometer with a 1-in. gauge length.

Figure 25.  Extensometer mounted on test specimen.

The biaxial extensometer, as shown in figure 26, was also considered. However, the instrument
weight deformed the specimen unacceptably. Efforts were made to support the weight of the instrument.
Unfortunately, the instrument relies on its weight to maintain contact between the knife edges and the
specimen. It was too difficult to reduce the deformation in the specimen and maintain adequate weight
on the knife edges of the instrument. The biaxial extensometer was abandoned in place of the previously
mentioned extensometers and strain gauges. Strain gauges were attached to both sides of the specimen
(fig. 27). The strain gauges were 90° Tee rosettes, model CEA–06–125UT–120, manufactured by Micro-
Measurements. The gauges were oriented in the axial and transverse directions.
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Figure 28.  Strain gauge installation.

Figure 26.  Biaxial extensometer.

Figure 27.  Specimen with strain gauge installed.

All the strain measurements were made at room temperature (≈75 °F). The strain gauge
installation was completed by the strain gauge manufacturer’s recommendation (fig. 28).13
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The specimen was smoothed using fine-grit sandpaper and was free from irregularities and
contaminates. An acidic cleaner, Prep Conditioner A, was applied to the gauge region. M–Prep Neutral-
izer 5A followed the acid cleaner. Micro-Measurements M–Bond 200 and a catalyst were used to bond
the gauges to the specimen. The four strain gauges provided axial and transverse strain data for each
side of the specimen. This allowed the data to be corrected for any bending.

The strain gauge installation method worked well providing no porosity or surface “grit” was
present. As mentioned earlier, the order in which the ingredients are mixed and the manner in which
the molds are poured significantly affected specimen porosity and texture. Specimens with high porosity
or a texture that could not be sanded smooth were discarded.

3.6  Shear Specimen Instrumentation

ASTM D 537993 defines the instrumentation for the shear test article.15 This standard specifies
a strain gauge rosette with two 45° strain gauges be placed in the center of the specimen. The gauges
are oriented at ±45° to the loading axis (fig. 29).

3 in.

0.75 in.

Strain Gauge

45°

Figure 29.  Strain gauge location for shear specimen.

The recommended strain gauge configuration requires the use of correction factors to account for
the gradient of strain between the notches. Ifju18 developed a special strain gauge that overcomes many
of the problems associated with the ASTM recommended strain gauges. Micro-Measurements offers this
strain gauge configuration as N2A–08–C032A.18 It is a two-gauge rosette with the gauges at 45° and
–45° and records the average strain between the notches. These strain gauges were recommended in the
Micro-Measurements catalog as being specifically made for Iosipescu shear testing (fig. 30).23 The
strain gauge outputs the shear strain directly, avoiding the need for correction factors. The strain gauge
installation was the same as used for the tensile test specimens.
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Figure 31.  Iosipescu pathfinder specimen.

Figure 30.  Shear specimen with strain gauges.

The gauges are mounted on each side of the test specimen18 in order to remove the effects
of twisting from the specimen. The strain gauges were connected into a full-bridge circuit as recom-
mended.18,23 This configuration of four strain gauges, two on each side of the specimen, results in a
strain reading that is twice the desired reading. A metallic “pathfinder” specimen was used to verify the
Iosipescu test fixture and instrumentation (fig. 31). The pathfinder specimen had a known shear modulus
value of 10.8 × 106 lbf/in.2 The percentage of error is shown in the following calculation:

Error% =
−

× = −
10 8 10 93

10 8
100 1 2

. .
.

% . % . (20)

The test data compared very well to the actual value for the shear modulus.
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3.7  Tensile Test Procedure

The tensile test was run using an MTS 20-kip test machine with a numerical control system
(fig. 32). The strain gauge and extensometer data were recorded with a digital data acquisition system.
The load was applied at a rate of 0.05 in. per minute and data were recorded every 0.5 sec. Load was
applied until an auditable “snap” marked the initial failure point of the cementitious material; strain data
beyond that point were unreliable.

Figure 32.  Tensile test machine.

As discussed in section 3.5, extensometers and strain gauges were initially used for strain mea-
surement. The axial extensometer and the strain gauge data were in fairly good agreement (fig. 23).
However, the extensometers could not be attached to both sides of the test specimens. In addition, the
knife edges of the transverse extensometers slipped and lost contact with the specimen easily. Therefore,
the extensometers were replaced with strain gauges.

Each tensile test specimen had four strain gauges, one axial and one transverse gauge on each
side. The strain gauges were located back to back on each specimen; this allowed the strain data to be
corrected for any bending caused by misalignment of the test articles. The data were corrected for
bending by taking the average of the two strain gauges (fig. 33).

The strain gauges in the axial direction provided consistent and reliable data throughout the test
program. However, the strain gauges in the transverse direction proved to be less trustworthy. The data
illustrated in figure 34 are typical of the transverse data recorded for most of the tensile specimens. The
strain data appear to be constant for a number of loads; then the strain suddenly increases. This pattern
repeats itself, forming a curve that resembles a step function. A linear best-fit line through the data will
be used to approximate the curve.
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Figure 34.  Sample transverse strain gauge readings.
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Figure 33.  Sample axial strain gauge readings.
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3.8  Axial Properties From Tensile Test Data

Numerous tensile test specimens were produced and tested while developing the testing proce-
dures described in this TM. While this trial-and-error procedure was time consuming and labor intensive,
it eventually produced an acceptable test specimen and procedure. A final set of tensile test specimens
was produced using the lessons learned from previous experience.

The test specimens were each tested using the same procedure. Data from four strain gauges and
the machine load were recorded. The data acquisition system stored the load and strain data in a spread-
sheet for analysis and plotting. The stress values are calculated from the area of the test specimen and
applied load:

σ =
Load

(Width)(Thickness)
lbf

in.2
(21)

As previously discussed, the strain values are the average from the back-to-back gauges:

ε
ε ε

axial
axial
side 1

axial
side 2

2
=

+( )
. (22)

The data were then plotted to produce a stress-strain curve (fig. 35) for each specimen.
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Figure 35.  Typical stress-strain curve for each specimen.
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Figure 37.  Summary of tensile test specimens.
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Figure 36.  Calculation of Young’s modulus for each specimen.

Young’s modulus is defined as the slope of the linear portion of the stress-strain curve.6 The
value can be determined by placing a best-fit line through the data points. The slope of the line is then
taken as Young’s modulus for the specimen (fig. 36). This procedure was repeated for six test specimens.
A summary of tensile test data indicates consistent results (fig. 37). Appendix B contains the complete
set of data plots for the tensile test specimens.
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3.9  Poisson’s Ratio From Transverse Test Data

The transverse strain values can be used to determine the Poisson’s ratio for the composite
material. By definition, Poisson’s ratio is given by the equation ν12 = – ε2/ε1, assuming a uniaxial
stress.6 The transverse strain data from each of the five test specimens is presented in detail in
appendix B. As mentioned in section 3.7, the transverse strain data presented here are the average
of two back-to-back strain gauges (fig. 38). In addition, a best-fit line is drawn through the data points.
The data were fairly consistent from one test article to another (fig. 39); the same “step function” pattern
was present in all the test articles (sec. 3.7).

CG–SG4

Dec_28-4

Dec_28-5

Dec_28-6

Dec_28-7

Dec_28-8

1.004

1.016

1.006

1.000

1.003

1.000

0.120

0.190

0.196

0.216

0.210

0.180

5.00 × 105

3.88 × 105

3.91 × 105

4.07 × 105

3.98 × 105

4.40 × 105

Specimen
Width
(in.)

Thickness
(in.)

Young’s Modulus
Test Results

(lbf/in.2)

Table 4.  Young’s modulus from tensile test.

Young’s modulus values from the six tensile test specimens are summarized in table 4. The
“pathfinder” specimen CG–SG4 was made thinner than the other specimens. Several of the thinner
specimens were damaged during the sanding process, so a thicker mold and specimen were later pro-
duced. The remaining five specimens were made from the thicker mold and are represented in figure 37.
The average Young’s modulus value for the five specimens is 4.04 × 105 lbf/in.2, with a standard
deviation of 0.20 × 105 lbf/in.2
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Figure 38.  Typical transverse strain curve.
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Figure 39.  Summary of transverse strain data.

The Poisson’s ratio calculations were made from the following straight-line approximation:

σ ε= +0 388 15 812. .axial
(23)

and

σ ε= − −2 9036 2 5466. . .trans
(24)

Solving the equations for the strain,

ε σ
axial =

−( . )
.
15 812

0 388
(25)

and

ε σ
trans =

+
−

( . )
.

.
2 5466

2 9036
(26)

Substituting into the equation for Poisson’s ratio,

ν
ε
ε

= − trans

axial
, (27)

then
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ν

σ

σ=

+
−







−





( . )
.

( . )
.

.

2 5466
2 9036
15 812

0 388

(28)

Poisson’s ratio can now be calculated for each of the five test specimens (table 5).

Dec_28-4

Dec_28-5

Dec_28-6

Dec_28-7

Dec_28-8

0.136

0.135

0.142

0.131

0.144

Specimen Experimental

Table 5.  Poisson’s ratio.

The average Poisson’s ratio is 0.137 with a standard deviation of 0.00532. The small standard
deviation provides confidence that the data are reasonable.

3.10  Shear Test Procedure

ASTM standard D 5379–9315,16 documents the standard shear test for determining the shear
properties of composite materials. This test uses a specimen referred to as the V-notched beam (fig. 40).
This test is often referred to as the Iosipescu shear test, in honor of its developer. The test specimen is
placed in a massive test fixture referred to as an Iosipescu shear test fixture (fig. 41). The test fixture is
described in detail in the ASTM standards.

3 in.

0.75 in.

Figure 40.  V-notched shear specimen.
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Figure 41.  Iosipescu shear test fixture.

The specimen is inserted into the fixture with the notches aligned with the center of the test
fixture. The two halves of the test fixture are compressed by the MTS testing machine while monitoring
load. The relative displacement between the two halves of the fixture loads the notched specimen. Strain
gauges are placed in the center of the specimen to measure the shear strain response during loading.18,23

3.11  Shear Properties From Iosipescu Shear Testing

The cost and availability of the strain gauges used on the test specimens limited the number
of Iosipescu shear tests. As a result, only six instrumented test specimens were available. The first test
specimen was a metallic pathfinder specimen that was used to verify that the test procedure, instrumen-
tation, and fixture could be used to determine the shear modulus for a well-characterized material
(sec. 3.5). The results from the pathfinder specimen were in excellent agreement with the known values
for the material. However, of the remaining five composite specimens, only two specimens were suc-
cessfully tested. The data from the first composite specimen were not usable due to a problem with the
data acquisition system. The increment for the load data was not properly set during the test. The strain
gauges on the third and fifth test articles failed to provide usable data during the test. The gauges appar-
ently debonded from the test specimens. The debonds were most likely caused by poor surface prepara-
tion during the strain gauge installation. It should be emphasized that the Iosipescu shear fixture and test
specimens performed well during testing. The results from the two successful tests confirm this observa-
tion (fig. 42). The strain gauge on specimen 4 failed at ≈3,000 µ; however, the test article continued to
take load. The strain gauge on specimen 2 continued to provide strain data until the article failed.
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The shear modulus is defined as the slope of the linear portion of the shear stress-shear strain
curve.6,15 The value can be determined by placing a best-fit line through the datapoints. The slope of the
line is then taken as the shear modulus for the specimen (fig. 43). This procedure was repeated for two
test specimens. A summary of shear test data indicates consistent results (table 6). Appendix B contains
the complete set of data plots for the shear test specimens.
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Figure 42.  Iosipescu shear test results.
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Figure 43.  Iosipescu shear test article 2.
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Shear 2

Shear 4

Average

0.458

0.457

0.180

0.186

7.2 × 104

7.8 × 104

7.5 × 104

Specimen
Width
(in.)

Thickness
(in.)

Shear Modulus
(lbf/in.2)

– –

Table 6.  Shear modulus summary.

A best-fit line is drawn through the datapoints to provide a means of accurately calculating the
shear modulus (fig. 43). The shear modulus is given by the slope of the straight line:19
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in.
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−
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(30)

As shown in table 6, the average shear modulus is 7.5 × 104 lbf/in.2, with a standard deviation
of 0.42 × 104 lbf/in.2 The percentage of possible error is determined by the following:

7.5 10
lbf

in.
0.42 10

lbf

in.
7.92 10

lbf

in.
4

2
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and

Error% =

lbf

in.
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in.
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in.
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= (32)

3.12  Summary of Composite Material Properties

The material properties for this graphite-reinforced cementitious composite material were

successfully determined from standard test methods. It was found that the constituent materials can be

mixed and placed to form laminated composite plates. The plates were cured at room temperature and

without a vacuum bag. The composite material can be machined into various shapes using standard

machining tools such as a router. Strain gauges can be applied to the surface of the composite using

M–Bond 200 and following the standard methods of installation. The results of the material testing

were consistent and repeatable for both tensile and shear testing.

The materials property data can now be used as a basis for comparison to theoretically derived

values. In addition, these values will be used to develop the analytical tools needed to predict the

response of multilayered beams made from graphite-reinforced cementitious materials.
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4.  RULE OF MIXTURES FOR A COMPOSITE MATERIAL

The rule of mixtures is investigated as a method to predict the material properties of graphite-
reinforced cementitious composites. The equations for the effective material properties are derived using
the assumptions associated with the rule of mixtures. These material properties are then compared to the
results of the material properties testing. Several derivations are then made to illustrate that these mate-
rial properties can be used with the elastic curve equations to determine the deflection of simple beams.
Deflection results from a finite element model and a static test are compared to the analysis using the
elastic curve equations. The results illustrate the deflections can be predicted by using the material
property data from the rule of mixtures method. However, several deficiencies and limitations are
encountered. The conclusion is made that the rule of mixtures can provide a reasonable value for
Young’s modulus in the axial direction. However, the theory cannot provide accurate values for
Poisson’s ratio, the shear modulus, or Young’s modulus transverse to the direction of the fibers and load.

4.1  Material Properties in the Axial Direction

The rule of mixtures is a method for determining the effective properties of a composite material
based on the contributions of the individual constituents.10 The properties of the composite are related to
the quantity of the fibers in the matrix. The fiber volume fraction (Vfiber) and the matrix volume fraction
(Vmatrix) are used to measure the amount of fiber or matrix in a given volume of material. E in the direc-
tion of the fiber, E1, can be determined by assuming the strains in the fiber direction are the same in the
fibers as in the matrix; i.e., εfiber = εmatrix. Since the strain in the fiber is the same as the strain in the
matrix, the sections normal to the fiber direction remain plane after stressing (fig. 44).
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1
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Figure 44.  Loading in axial direction.
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The applied force (P), P = Pfiber + Pmatrix, acts on the total cross-sectional area (A). The fiber
stress (σfiber) acts on the cross-sectional area of the fiber (Afiber). The matrix stress (σmatrix) acts
on the matrix area (Amatrix). The force equation can then be written in terms of the stress and area,
σ1A1 = σfiberAfiber  + σmatrixΑmatrix. Now by substituting the Hooke’s law equations for the stress terms,
the force equation may be written in terms of strain and Young’s modulus as E1ε1A1  =  Efiberε1Afiber
+ Ematrixε1Amatrix. Simplifying the equation results in an expression for Young’s modulus in terms
of the ratio of the areas:

E
E A

A

E A

A1
1 1

= +fiber fiber matrix matrix . (33)

Vfiber and Vmatrix can be defined as Vfiber = Afiber/A1 and Vmatrix = Amatrix/A1.

By definition, the volume fractions must satisfy the equation Vfiber + Vmatrix = 1. Thus,
the expression for the effective Young’s modulus in direction 1 can be written in terms of the volume
fractions:

E V E V E1 = +fiber fiber matrix matrix . (34)

4.2  Material Properties in the Transverse Direction

The effective property in the matrix direction, perpendicular to the fiber direction, can be
determined by assuming equivalent stress in the fiber and the matrix (fig. 46).

The strain in direction 1, the fiber direction, is given by the deflection divided by the original
length, ε1 = ∆L/L. Applying Hooke’s law and assuming both the fiber and the matrix are linear, then
σfiber = Efiberε1 and σmatrix = Εmatrixε1. This relationship can be compared to two springs acting in
parallel (fig. 45). The total load (P) is carried by the load in the fiber (Pfiber) and the load in the matrix
(Pmatrix).

Figure 45.  Spring in parallel.
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Figure 46.  Loading in transverse direction.

In the transverse direction, the cross-sectional areas are equal and the load is constant across the
area; therefore, σ is equal for the fiber and the matrix. Then the strains in the fiber and matrix can be
written in terms of the stress, εfiber = σ2/εfiber and εmatrix = σ2/εmatrix. The fiber and matrix transverse
strains are not assumed to be equal. Now consider figure 46. The total transverse deflection (∆w) is the
sum of the fiber deflection (∆wfiber) and matrix deflection (∆wmatrix): ∆w = ∆wfiber + ∆wmatrix. Defining
the strains in terms of the fiber deflection, εfiber = ∆wfiber/Lfiber and the deflection of the matrix, εmatrix
= ∆wmatrix/Lmatrix. The transverse dimension over which the fiber and matrix strains act can be written in
terms of Vfiber: Lfiber = Vfiberw and Lmatrix = Vmatrixw. The deflection equation can now be defined in
terms of strain: ε2w = εfiber (Vfiberw) +εmatrix(Vmatrixw). Now the w factor vanishes from both sides
of the equation. Hooke’s law equations can be substituted for the strains, σ2/E2 = Vfiber σ2/Efiber
+ Vmatrix σ2/Ematrix. The stress term now vanishes from both sides, 1/E2 = Vfiber/Efiber + Vmatrix/Ematrix.
Solving the above equation for the E2 term gives an equation for the Young’s modulus in the transverse
direction as

E
E E

V E V E2 =
+

fiber matrix

matrix fiber fiber matrix
. (35)

4.3  Determination of Poisson’s Ratio

Poisson’s ratio (ν) is defined as the ratio of the transverse strain over the strain in the fiber direc-
tion when stress in the fiber direction is present and all other stress is zero, ν12 = –ε2/ε1. In such a case,
the following definitions can be made: νmatrix = εmatrix/ε1 and νfiber= εfiber/ε1. Recalling that the deflec-
tion equation was previously defined as ε2w = εfiber(Vfiberw) + εmatrix(Vmatrixw), the latter can be divided
by ε1 and simplified to the equation ε2/ε1 = εfiber/ε1(Vfiber) + εmatrix/ε1(Vmatrix). Substituting the
Poisson’s ratio (ν12) as defined above in the equations results in the following expression:

ν ν ν12 = +fiber fiber matrix matrixV V . (36)



42

4.4  Determination of the Shear Modulus

To determine the shear modulus (G12), one assumes that shear stress (τ) on the fiber
and the matrix are equal. As illustrated in figure 47, the shear for the composite plate is defined
as γ12 = τ/G12.
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Figure 48.  Shear deformations.
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Figure 47.  Shear loading.

This assumption means that the shear deformation for the matrix and the fiber can be written as
γmatrix = τ/Gmatrix and γfiber = τ/Gfiber. As shown in figure 48, the shear deflection (∆) is a function of the
shear strain and the width (w): ∆ = γ w. In addition, ∆ is the sum of the fiber deflection plus the matrix
deflection: ∆ = ∆fiber + ∆matrix.
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As previously shown, the deflection for the matrix and fiber can be stated in terms of the volume
fractions, Vfiber and Vmatrix: ∆matrix = γmatrix(Vmatrixw) and ∆fiber = γfiber(Vfiberw). Substituting into
the deflection equations and allowing the w factor to vanish results in the equation for shear strain:
γ  =  γ  matrixVmatrix + γ fiberV fiber. Finally, one can substitute the Hooke’s law equations for shear strain
to obtain τ/G12 =  Vmatrixτ/Gmatrix + V fiberτ/Gfiber. This equation can be simplified by allowing the shear
stress term to vanish and solving for G12:

G
G G

V G V G12 =
+

matrix fiber

matrix fiber fiber matrix

 . (37)

4.5  Calculation of the Effective Material Properties

Equations (34)–(37) can now be used to calculate the effective material properties of a graphite-
reinforced cementitious composite. The material properties for the matrix were obtained from the
manufacturer of the graphite mesh. The properties for the matrix were obtained from previous research1

and confirmed with tensile tests (app. B). The material properties for the fiber and the matrix are defined
as follows:

Efiber = 33.5 × 106 lbf/in.2

Ematrix = 115.1 × 103 lbf/in.2

νfiber = 0.3
νmatrix = 0.27
ρfiber = 0.064 lbf/in.3

ρmatrix = 0.35 lbf/in.3

Gfiber = Efiber/2(1 + νfiber)
Gmatrix = Ematrix/2(1 + νmatrix).

The fiber area in the composite must be determined from the properties of the graphite.
Data provided with the graphite define the area in one graphite yarn (Ayarn). The number of yarns
(Nyarn) is determined for the test specimen and the total area of the graphite (Afiber) is determined:
Ayarn = 0.000175 in.2, Nyarn = 8, and Afiber = NyarnAyarn.

The total area of the specimen (A1) is determined from the thickness and width of the specimen.
For the example presented here, the test article is labeled CG–SG4, and t = 0.12 in., w = 1.004 in., and
A1= 0.012 in.2 The fiber and matrix volumes, respectively, can be calculated as follows: Vfiber = Afiber/A1
and Vfiber = 0.012; Vmatrix = 1 – Vfiber and Vmatrix = 0.988.

Thus, the values for the effective material properties can be calculated as follows:
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•  Young’s modulus (direction 1):

E V E V E

E

1

1
55 045 10

= +

= ×

fiber fiber matrix matrix

2lbf in.. (38)

•  Young’s modulus (direction 2):

E
E E

V E V E

E

2

2
51 164 10

=
+

= ×

fiber matrix

matrix fiber fiber matrix

2lbf in.. (39)

•  Poisson’s ratio:

ν ν ν

ν

12

12 0 27

= +

=

fiber fiber matrix matrixV V

. (40)

•  Shear modulus:

G
G G

V G V G

G

12

12
44 62 10

=
+

= ×

fiber matrix

matrix fiber fiber matrix

2lbf in.. (41)

4.6  Comparison of Rule of Mixtures Properties to Test Data

Prior to each tensile test, the width and thickness of each specimen was recorded. Specimen
CG–SG_4 was the pathfinder specimen and was made thinner than the other specimens. The hand-
polishing of the specimen surface resulted in a variation in specimen thickness for the remaining five
specimens (table 7). These dimensions were used with the Mathcad® solution sheet for the rule of
mixtures to predict the Young’s modulus in the axial direction. The results of the analysis are presented
in table 7. The results from the rule of mixtures can be compared to the results from tensile testing.
Figure 49 is a stress-strain curve for specimen CG–SG_4.
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The testing of this type of specimen is discussed in detail in section 3. The data are presented
here to provide a comparison between the material properties calculated from the rule of mixtures and
the test data. Young’s modulus from the tensile test is calculated by taking the slope of the stress-strain
curve:

5.05 × 105

3.58 × 105

3.52 × 105

3.31 × 105

3.37 × 105

3.75 × 105

CG–SG4

Dec_28-4

Dec_28-5

Dec_28-6

Dec_28-7

Dec_28-8

1.004

1.016

1.006

1.000

1.003

1.000

0.120

0.190

0.196

0.216

0.210

0.180

Specimen
Width
(in.)

Thickness
(in.)

Young’s Modulus
Rule of Mixtures

(lbf/in.2)

Table 7.  Young’s modulus predicted from the rule of mixtures.

Figure 49.  Composite stress-strain curve (SG_4).
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The errors range from 0.89 to 18.6 percent; averaging the six test specimens yields an average
error of 11.23 percent with a standard deviation of 6.4 percent. In each case, the rule of mixtures under-
estimates the test value, suggesting that the predictions may be modified9,10 to more closely match the
test values. Empirical modifications to the rule of mixtures would require a considerable test program to
generate a large enough database from which to derive an accurate factor. It is sufficient for this TM to
recognize that the rule of mixtures provides a reasonable estimate of the composite material properties.
The comparison establishes the fact that the rule of mixtures is applicable to a cementitious-based
composite and suggests that employing empirical modifications can increase the accuracy.

Young’s modulus in direction 2 was not accurately determined from the rule of mixtures. This
composite is made from a graphite mesh, which results in fibers running in both directions 1 and 2.
Since the composite has the same material composition in both directions, it is intuitively obvious that
the Young’s modulus in directions 1 and 2 would be equal. The rule of mixtures calculates the E2 value
well below test results. This is not unexpected, since this theory considers only fibers in direction 1.2,10

However, the equations developed by Krenchel3 can be used to transform the fiber direction and load to
accurately predict E2. Krenchel’s transformation equations depend on the orientation of the fibers to the
load. These equations are based on the same principles as presented in section 4.2. However, the proper-
ties in direction 2 can be calculated by mathematically rotating the load 90° (app. A). Regardless of the
apparent inadequate results in direction 2, the rule of mixtures can still provide the necessary data for the
analysis of simple beams.

E E

E E

E

test
2

test 2

error
test 1

test
error

lbf

in. lbf

in.

% .

=
−( )

−( ) ×
= ×

=
−

× =

−

1 500 500

3 000 1 000 10
5 10

100 0 898

6
5

,

, ,

% .∆ ∆ (42)

The analysis is repeated for each of the tensile test specimens. Comparing the Young’s modulus
data to predicted values provides insight into the accuracy of the rule of mixtures method (table 8).

CG–SG4

Dec_28-4

Dec_28-5

Dec_28-6

Dec_28-7

Dec_28-8

5.00 × 105

3.88 × 105

3.91 × 105

4.07 × 105

3.98 × 105

4.40 × 105

Specimen

Young’s Modulus
Test Results

(lbf/in.2)

0.89

7.70 

10.00

18.60

15.30

14.80

Measurement of Error
(%)

5.05 × 105

3.58 × 105

3.52 × 105

3.31 × 105

3.37 × 105

3.75 × 105

Young’s Modulus
Rule of Mixtures

(lbf/in.2)

Table 8.  Comparison of predicted Young’s modulus with test results.
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4.7  Comparison of Poisson’s Ratio From Tensile Test Data

Poisson’s ratio from the transverse data is presented in section 3.8. Poisson’s ratio for the five test
specimens presented in table 4 is calculated using the rule of mixtures equation (40), ν12 = νfiberVfiber
+ νmatrixVmatrix. The results of the calculations are presented in table 9.

Dec_28-4

Dec_28-5

Dec_28-6

Dec_28-7

Dec_28-8

0.136

0.135

0.142

0.131

0.144

Specimen
Error
(%)Experimental

0.262

0.262

0.262

0.262

0.262

48.0

48.5

45.8

50.0

45.0

Rule of Mixtures

Table 9.  Comparison of predicted Poisson’s with test results.

The error in the Poisson’s ratio calculation is substantial. However, it is not entirely unexpected
(sec. 3.5).2,10 The derivation for the rule of mixtures assumes the reinforcement fibers are present in the
axial direction only. The theory cannot account for fibers running in the transverse direction, emphasiz-
ing the need to develop a solution based on the laminated plate theory for composites.

4.8  Comparison of Shear Modulus Values

The shear modulus (sec. 4.4) of the matrix and the fiber can be obtained knowing the Young’s

modulus and Poisson’s ratio as follows:6

G
E

G
E

matrix
matrix

matrix
2

fiber
fiber

fiber
2

lbf

in.

lbf

in.

=
+( ) = ×

=
+( ) = ×

2 1
4 5 10

2 1
12 8 10

4

6

ν

ν

.

. (43)

The shear modulus of the composite is determined from the shear moduli of the constituents

and the volume fractions of the composite. Applying equation (41),

G
G G

V G V G12
44 6 10=

+
= ×matrix fiber

matrix fiber fiber matrix
4

lbf

in.
. (44)

It is apparent from the G12 value that the graphite fiber does not significantly increase the shear modulus

of this composite. However, the results of the shear testing do not support this observation (fig. 40).
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The average percent of error, 38.6 percent, indicates that the rule of mixtures significantly

underpredicts the shear modulus for this composite. The test results indicated the shear modulus is

greater for the composite than for the cementitious material.

4.9  Summary of Material Properties

In the axial direction, Young’s modulus can be determined from the rule of mixtures. The rule
of mixtures prediction is on average 11 percent less than the value obtained from tensile test data. As
expected, the rule of mixtures did not predict the Young’s modulus in the transverse direction. For the
composite considered here, Eaxial = Etransverse. In addition, the rule of mixtures did not predict the
Poisson’s ratio for the composite material. The material property testing indicated a Poisson’s ratio value
≈50 percent less than the value predicted by the rule of mixtures. The results of the shear test determined
a shear modulus that is on average 39 percent higher than the value predicted by the rule of mixtures.
Although only two shear test specimens were available, the good correlation in the two test specimens
gives credibility to the test data.

The limitations of the rule of mixtures are obvious from the review of these results. This observa-
tion leads to the conclusion that additional analytical methods must be investigated to determine all the
material properties for the composite. However, before pursing these additional analytical methods, it
should be recognized that many analytical problems could be solved using the information provided by
the rule of mixtures.

4.10  Calculation of the Deflection for a Beam in Pure Bending

The rule of mixtures method for calculating the effective material properties for a composite
beam has been compared to material test data. The results indicated that the rule of mixtures could be
used to predict the Young’s modulus in the direction of the fiber and load, E1 or Eeffective. The next
logical step is to combine this material property with an analytical method that can be used to predict the
behavior of a composite structure. As noted earlier, the transform section method was not accurate for

Comparing the predicted value and the value from the test article (table 10),

Error% =
× − ×( )

×
× =

4 6 10 7 2 10

7 2 10
100 36 1

4 4

4

. .

.
% . % . (45)

Shear 2

Shear 4

7.2 × 104

7.8 × 104

Specimen

Shear Modulus
Test Results

(lbf/in.2)

–36.1

–41.0

Measurement of Error
(%)

4.6 × 104

4.6 × 104

Shear Modulus
Rule of Mixtures

(lbf/in.2)

Table 10.  Comparison of predicted shear modulus with test results.
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this composite because the Young’s modulus ratio was extremely high. However, using the effective
materials property data, the Young’s modulus ratio (η = Eeffective/Ematrix) is now <20 and in the accept-
able range. The Biszick beam1 can now be analyzed by using the effective material property data and the
transform section theory. The results will be compared to static test results to give an indication of the
accuracy of the methods employed.

The cross section of a composite beam, fabricated of the same graphite and matrix materials used
throughout this research, is illustrated in figure 50. An assumption is made that the beam is composed of
two materials; the “graphite section” is composed of graphite and matrix material. The hg dimension of
this section is the same thickness as the tensile test articles used to verify the effective material proper-
ties for the composite material. The transform section analysis method will assume the graphite-
reinforced section has the effective material properties calculated by the rule of mixture method. The
geometry of the test specimen is used to determine the dimensions of the graphite strands and the thick-
ness of the graphite section:

wg = 1.20 in.
hg  = 0.115 in.

wc

hg

hc

Graphite Section

Matrix Section

Figure 50.  Cross section of beam.

The remaining dimensions of the composite section are calculated as follows:

hc = 0.361 in. – hg
wc = 1.20 in.
hc = 2.46 × 10–1 in.

This test specimen has nine yarns across the width. The fiber volume can be determined
from the geometry of the test specimen:

Ayarn = 0.000175 in.2

Nyarn = 9
Afiber = NyarnAyarn
A1    = (0.115 in.) (1.20 in.)
Vfiber = Afiber/A1
Vfiber = 1.141 × 10–2.
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The matrix volume is then calculated from the rule of mixtures:

Vmatrix = 1 – Vfiber
Vmatrix = 9.886 × 10–1.

The material properties of the graphite and matrix are the same as previously defined:

Efiber   = 33.5 × 106 lbf/in.2

Ematrix = 115 × 103 lbf/in.2

The effective material properties for the composite section of the beam can be calculated.

•  Young’s modulus in direction 1:

E V E V E E1 1
54 9602 10= + = ×fiber fiber matrix matrix 2                

lbf

in.
. (46)

The moment of inertia for the beam can now be calculated using the transform section method.
The Young’s modulus ratio for the transform section is calculated from the effective material properties
and the matrix material properties:

η η= =
E

E
1 4 313

matrix
. . (47)

The beam geometry is transformed by multiplying the width of the graphite section by η:

w w wg g g= =η 5 176. in. (48)

The centroid and the area of the graphite section are given by

y h
h

A h wg c
g

g g g= +






=

2
  , (49)

while the centroid and the area of the matrix material is

y
h

A h wc
c

c c c= =
2

  . (50)
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The centroid of the transform section is given by

Y
A y A y

A A
Y

g g c c

g c
bar bar in.=

+
+

= × −2 4366 10 1. (51)

The cross section of the composite is symmetric in the X direction; thus, the X location
of the centroid is the center of the beam:

X
w

Xc
bar bar in.= =

2
0 6. (52)

The moment of inertia for the graphite-reinforced section of the beam can be calculated by using
the parallel axis theorem, I = Ig + Agd2. The base of the top section is transformed by η and the height of
the graphite-reinforced section is given by h hg= . The moment of inertia of the graphite-reinforced

section with respect to its centroid is given by the equation

I
bh

g =
3

12
. (53)

The area of the graphite-reinforced section is the base multiplied by the height:

A bhg = . (54)

The distance from the center top section to the centroid of the section is

d Y h
h

c
g= − +






bar 2
. (55)

Applying the parallel axis theorem,

I I A d Ig g g g_ _ .total total in.= + = × −2 3 42 7875 10 (56)

The moment of inertia for the matrix (bottom) section of the beam can be calculated using
the same method. The base and the height of the matrix section are

b w h hc c= =   . (57)



52

The moment of inertia of the matrix section with respect to its centroid and the areas are

I
bh

A bhc c= =
3

12
  . (58)

The distance from the center of the matrix section to the centroid of the section is

d Y
hc= − 



bar 2

 . (59)

The moment of inertia for the matrix with respect to the centroid of the composite beam
can be calculated as follows:

I I A d Ic c c c_ _
–.total total                  in.  = + = ×2 3 45 7864 10 (60)

The total moment of inertia for the transform section is the sum of the moment of inertia for each
section:

I I I Ic gtotal total total total               in.= + = × −
_ _ .8 5739 10 3 4 (61)

The beam was subjected to a three-section bending test. A rigorous deflection analysis of the
beam test was performed to establish a base of comparison to finite element modeling and test data.
The comparisons provide insight into the accuracy of the methods used for the analysis.

The equation for the elastic curve of this beam will be derived as part of this analysis. Although
a solution to this beam problem is available in the literature, it was important to develop the solution in
this TM because of variations in the boundary conditions. Laboratory testing strives to duplicate the
exact boundary conditions; however, it is sometimes impractical. The equations aided in determining
which boundary conditions had significant effects on the results being recorded. These equations were
solved for a variety of boundary conditions using a Mathcad12 solution sheet (app. C). It should be noted
that with the aid of these equations and WD-40 lubricant, the test fixture eventually duplicated the
proper boundary conditions.

In general, the elastic equation for a curve is given by EI(d2/dx2)y = M(x). The moment in each
section of the beam (fig. 51) can be derived by passing a section through that location. In section 1
(x < a), for example, the moment at x is computed from the free-body diagram shown in figure 52 as Px .
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Substituting the later into the governing equation for section 1, x < a:

EI
d

dx
y Px

2

2 1 =   . (62)

Integrating once,

EI
d

dx
y

Px
C1

2

12
= +   . (63)

Integrating again,

EIy
Px

C x C1

3

1 26
= + +   . (64)

a b

L

P P

P P

a

Figure 51.  Free-body diagram of the beam.

P

V

M1

x

Figure 52.  Free-body diagram of section 1.
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Finally, for section 3, figure 54, x > (a + b),

EI
d

dx
y Pa Pb Px

2

2 3 2= + − (68)

EI
d

dx
y Pax Pbx

Px
C3

2

52
2

= + − + (69)

EIy Pax
Pbx Px

C x C3
3

2 3

5 62 6
= + − + +   . (70)

P

P

V

P

M3

x

a b

Figure 54.  Free-body diagram of section 3.

Similarly, for section 2, figure 53, x > a but x < b:

EI
d

dx
y Pa

2

2 2 = (65)

EI
d

dx
y Pax C2 3= + (66)

EIy
P

ax C x C2
2

3 42
= + +   . (67)

P

P

V

M2

x

a

Figure 53.  Free-body diagram of section 2.
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Summarizing the equations and replacing the derivative with θ,

EI y
Px

Cθ1 1

2

12
= + , (71)

EI y Pax Cθ2 2 3= + , (72)

EI y Pax Pbx
Px

Cθ3 3

2

52
2

= + − + , (73)

EIy
Px

C x C1

3

1 26
= + + , (74)

EIy
P

ax C x C2
2

3 42
= + + , (75)

and

EIy Pax
Pbx Px

C x C3
3

2 3

5 62 6
= + − + + . (76)

The equations must satisfy the boundary conditions. For example, at x = 0, y1 = 0, equation (74)
can be written

0
6

3
1 2= + +

P
x C x Co o . (77)

At x a= , equation (74) must equal equation (75); therefore,

P
x C x C

P
ax C x C

6 21
3

1 1 2 1
2

3 1 4+ + = + + . (78)

In addition, at x = a, y1 = y2, and θ1 = θ2. Equation (71) must equal equation (72):

Px
C Pax C1

2

1 1 32
+ = + . (79)
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For the boundary condition x = (a + b), equation (75) equals equation (76):

P
ax C x C Pax

Pbx Px
C x C

2 2 62
2

3 2 4 2
2 2

2
2
3

5 2 6+ + = + − + + . (80)

Continuing in the same manner, at x = (a + b), y2 = y3, and θ2 = θ3, then equation (72) equals
equation (73):

Pax C Pax Pbx
Px

C2 3 2 2
2
2

52
2

+ = + − + . (81)

Finally, for the boundary condition x = L, equation (76) must equal zero:

0
2 63

2 3
2

3
3

5 3 6= + − + +Pax
Pbx Px

C x C . (82)

Equations (71)–(76), with the given boundary conditions, represent a system of equations which
can be solved simultaneously for the constants C1 through C6. A Mathcad solution was developed to
perform the calculations (app. C). Appendix C contains typical values for these constants. The elastic
curve equations may be restated as a function of x:

In section 1, x < a:

y x
EI

Px
C x C1

3

1 2
1

6
( ) = + +







(83)

and

θ1

2

1
1

2
( )x

EI

Px
C= +







 . (84)

The value for the moment of inertia is set to the value calculated from the rule of mixtures and
the transform section method. The Young’s modulus in the equation is set equal to that of the matrix; i.e.,

I I I

E E E

= = ×

= = ×

−
total

4

matrix 2

                          in.

                   
lbf

in.

8 574 10

1 15 10

3

5

.

. (85)
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In section 2, x > a < a + b:

y x
EI

Pax C x C2
2

3 4
1

( ) = + +( ) (86)

and

θ2 3
1

( )x
EI

Pax C= +( )  . (87)

Finally, in section 3, x > a + b:

y x
EI

Pax
Pbx Px

C x C3
2

2 3

5 6
1

2 6
( ) = + − + +







(88)

and

θ3

2

5
1

2
2

( ) .x
EI

Pax Pbx
Px

C= + − +






(89)

The composite beam was then subjected to the three-section bending test (fig. 55). Deflection
data were recorded at the center of the 9-in. beam.

Figure 55.  Three-section bending test fixture.
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The elastic beam analysis was repeated for each of the load steps used in the three-section beam
test. The load and deflection results are listed in the following matrices:

Load lbf,    test=
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Figure 56 illustrates that the test results and the analytical data are in very good agreement. Error
bars on the analytical data represent the 6.4-percent standard deviation associated in determining
Young’s modulus (table 8). This indicates that the transform section method of analysis can be used to
predict the deflections. However, the rule of mixtures must be applied to determine the effective Young’s
modulus.

Figure 56.  Transform section versus test results.
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4.11  Development of a Finite Element Model

An additional point of comparison was obtained by developing a finite element model of the
three-section beam test (fig. 57). The finite element model was developed for two reasons: (1) To con-
firm that the elastic beam analysis was correct and (2) to gain insight into modeling composite structures
using finite element codes. The finite element model was executed for each of the static test loads.

Y

Z X Default Deformation:
Max 2.46–01@Nd B40

Figure 57.  Finite element model.

The deflection results from the finite element model “specimen1” are as follows:

yfem in.=
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4.12  Calculate the Deflection for a Five-Layer Plate in Pure Bending

Section 4.2 demonstrates the analysis of a composite beam made from the graphite-reinforced
cementitious material. The University of Alabama in Huntsville (UAH) concrete canoe team produced
a large plate that is similar to the layups used in canoe construction. A test article 5 in. wide and 15 in.
long was cut from the composite plate. The challenge is to determine the deflections of the plate using
the information gained from the material properties of the constituents, the rule and mixtures, and the
transform section method of analysis. These are the tools and information that are available to the
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Figure 58.  Transform section, finite element, and test results.

The deflection results for both the elastic beam equation and the finite element model were plotted
with the deflections from the three-section bending test.

It is significant that the transform section method of analysis returns the same deflections as the
finite element solution. This leads to the conclusion that the transform section method of analysis can be
used for the analysis of a composite in which the Young’s modulus ratio is high, provided the effective
material property data are included in the calculations. Figure 57 indicates that both of the analytical
methods satisfactorily predict the results of the bending test (fig. 58). The error between the elastic beam
equations and the test data is relatively small:
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students at the time they are designing these competitive canoes. The beam is a buildup of five layers
as shown in figure 59.

y

0.05 in.

0.05 in.

0.05 in.

0.3 in.

0.075 in.

0.075 in.

x

5 in. Graphite Fiber 
and Matrix Material 

Matrix Material

Figure 59.  Cross section of multilayered composite beam.

The properties of the beam can be calculated by using the transform section method and the
effective material properties as determined from the rule mixtures. The effective Young’s modulus for the
three graphite and matrix sections is

E2
55 04 10= ×.

lbf

in.2
(93)

The Young’s modulus for the matrix material, E1, is determined from tensile testing of the
cementitious material (app. B):

E1
3115 10= ×

lbf

in.2
(94)

It was previously established that the Young’s modulus ratio must be <20 for the transform
section method to be accurate. Using the values established here, the Young’s modulus ratio is calculated
and is within acceptable limits:

η η= =
E

E
2

1
4 383. . (95)
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The dimension of the graphite sections is transformed by multiplying the width of the sections by
η. A Mathcad solution sheet (app. C) was used to perform the calculations for determining the moment
of inertia for the beam. These calculations are also described in section 4.10. The moment of inertia for
this cross section was calculated to be

 in.totalI = × −38 2 10 3 4. (96)

In general, the procedure for determining the properties of multilayer beams is the same as that
for a single-layer beam. It is interesting to note that the graphite section in the middle of the beam does
not contribute significantly to the bending strength. The beam is placed in a three-section bending test
with the specimen supported over a 15-in. span and loaded at two points, each located at a distance of
2.25 in. from the center of the span. Members of the UAH canoe team performed the testing during the
1999–2000 school year. This test was typical of those used by the team to evaluate the composite
designs considered for the canoe.

The elastic beam equation for this problem was provided previously. The deflection of the center
of the beam was calculated for the same loads used in the beam tests. Equations (86) and (87) are used
for the deflection calculations:

y x
EI

Pax C x C2
2

3 4
1

( ) = + +( ) (97)

and

θ2 3
1

( ) .x
EI

Pax C= +( ) (98)

The calculations were made using the Mathcad solution sheet (app. C). The derivation
for the beam equation is described in detail in section 4.10. Young’s modulus used in the equation
is from the matrix material:  E1 = 115 × 103 lbf/in.2

The results of this analysis are compared to the results from the bending test. As shown in figure
60, they compare well at deflections <0.25 in., then diverge as the deflections reach higher values. The
test results also appear to be slightly nonlinear. The nonlinear behavior of the displacements suggests
that the material properties are nonlinear.

The stress-strain curve for the test specimen can be established from the flexure formula
and the moment in the beam. The strain is calculated from the stress and based on the Young’s modulus
of the matrix as follows:

σ ε σ
( )

( )
( )

( )
.x

M x c

I
c

t
x

x

E
= = =                      

matrix2 (99)
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These calculations are presented in detail in the Mathcad solution sheet (app. C). The stress-
strain curve from the test specimen can now be compared to the stress-strain curve for the matrix
material. Figure 61 shows the stress-strain curve for the beam and the matrix material.
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Figure 60.  Deflection of multilayer beam versus test data (linear).
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Figure 61.  Stress-strain curve for matrix material.
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The experimental curve in figure 61 is derived from a combination of test and analysis. The first
section of the curve is from tensile testing using extensometers in the axial direction; the tensile test
specimens failed at ~2,000 microstrain. The stress-strain curve beyond that point is derived from the
tensile test data using a least-squares method to determine an equation for the curve.2
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These equations are solved for the minimum values of b0, b1, and b2:

Ψ = + + ( )b b b0 1 2
2σ σmatrix matrix . (101)

Equation (101) is the resulting stress-strain relationship used to extend the data for the tensile
test. The resulting curve is an approximation that does not represent actual material properties and is
only used to facilitate the analysis. This analytical method was developed by Balaguru2 for the nonlinear
analysis of ferrocement in bending.

The question arises as to whether the tension or compression properties of the matrix are deter-
mining the nonlinear behavior of the plate. Therefore, the compression properties of the matrix must also
be considered.2 Figure 62 compares the analytical curve for tensile properties with the compression
properties from the compression test. The data for the tensile (analytical) and compression (test) proper-
ties are in good agreement up to 6,000 microstrain. Furthermore, both curves indicate nonlinear behavior
beyond the 2,000 microstrain level.

Since Young’s modulus is in the nonlinear region, it must be recalculated as the load increases
beyond 2,000 microstrain. The elastic beam equation is then used with the nonlinear Young’s modulus
to calculate the deflections at the higher load levels. These calculations are illustrated in the Mathcad
solution sheet (app. C). The results are compared to the test data from the three-section bending test. The
error bars on the analytical data represent the 6.4-percent standard deviation associated in determining
Young’s modulus. As illustrated in figure 63, the data compares fairly well to the test results, even in the
nonlinear region of the curve.
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Figure 63.  Comparison of test results with nonlinear transform section results.
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The preceding analysis indicates that the combination of effective material properties and the
transform section method can be used to determine the deflection of multilayered composite beams. This
is similar to the work presented by Balaguru2 for the nonlinear behavior of ferrocement. These data also
indicate that as the matrix material becomes nonlinear, the deflection curve follows the same trend,
indicating that the bond between the fiber material and the matrix material may be slipping. However,
it should be noted that the beam did not fail even when the tension strain levels were far above the
maximum tension strain found when testing the matrix material.

It must be pointed out that several deficiencies exist in the preceding analysis. The first is recog-
nizing that the Young’s modulus ratio is constantly changing as the matrix material becomes nonlinear.
This implies that the moment of inertia for the beam is also changing. These changes are not considered
in the analysis. In addition, this method of analysis does not provide a means to determine the strains or
stresses in each layer of the composite beam.

4.13  Summary of the Rule of Mixtures Analysis

The rule of mixtures provides a method of calculating the effective material properties of the
composite from the volume fraction and material properties of the constituents. Comparing the effective
material properties with the data from the tensile and shear tests provided a measure of accuracy for this
method. Young’s modulus in the axial direction (E1) was 11 percent lower than the value found in the
tensile test. However, Young’s modulus in the transverse direction (E2) and Poisson’s ratio (ν12) did not
agree with the test data. The poor comparison for E2 and ν12 was not unexpected, since the composite
under consideration has fibers running in the transverse direction. These fibers are not considered in the
rule of mixtures theory. The shear modulus G12 was 39 percent lower than the value found in two test
specimens.

Although the information derived from the rule of mixtures is limited, it was used successfully to
predict the deflection of single and multilayer composite beams. The analysis used the transform section
method and the elastic beam equation to demonstrate that the effective Young’s modulus (E1) could be
used to predict deflections for a beam in pure bending. The analysis was verified by comparison to test
data and finite element models, and the analysis was extended to predict the nonlinear behavior of
composite material.

The fact remains, however, that these derivations are limited to the case in which the fibers are
running in the axial direction. This limitation can be overcome by applying the laminated plate theory
of composites to the cementitious composite in question.10
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5.  LAMINATED PLATE THEORY OF COMPOSITES

The rule of mixtures is limited by the assumption that the fibers are aligned in the direction of the
load.4,10 Laminated plate theory for composites offers a more complete analytical tool, provided this
class of material is compatible with the assumptions and derivations involved with the theory. Beginning
with laminated plate theory, the laminated composite plate equations will be derived. The derivations
will be programmed into a Mathcad24 solution sheet (app. D) to provide an automated method for
solving the equations. The equations will be arranged to form a system of simultaneous equations from
which an exact solution can be found. The solution includes all elements of the stiffness matrix and can
be used for symmetric or nonsymmetric laminated plates. The program is used to analyze a composite
plate for which the results are well known. Comparisons are made with other programs to demonstrate
an increase in accuracy. A finite element model is generated to provide a verification of the methods and
establish the procedures for modeling composite beams.

5.1  Plate Theory

Figure 64 shows a load-free plate where the midplane point A coincides with the x-y plane. The
deflection in the z direction is zero for all points on the plate. The deflection components at a point in the
x, y, and z directions are given by u, v, and w, respectively.

xa

ya

x

A

y
z

t

Figure 64.  Load-free plate.

The fundamental assumptions of the small deflection theory of bending for isotropic, homoge-
neous, elastic thin plates are based on their geometry. These assumptions are known as the Kirchhoff
hypotheses and can be stated as follows:10

•  The midsurface deflection is small compared with the plate thickness. The slope
of the deflected surface is very small and the square of slope is negligible.

•  The midplane remains unstrained subsequent to bending.
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•  Plane sections initially normal to the midsurface remain plane and normal to surface
after the bending.

•  The stress normal to the midplane (σz) is small compared to the other stress components
and may be neglected.

A plate can be deformed by normal, shear, and bending loads. The displacements in the x, y, z
directions are defined as u, v, w, respectfully. Figure 65 shows a plate experiencing normal stresses.20

Deformed

Undeformed

u

x

y

v

x0

y0

Figure 65.  Plate with normal displacements.

The strains for this displacement state in the x and y directions are defined by

εx
d

dx
u= (102)

and

εy
d

dy
v=  , (103)

respectively.

Figure 66, on the other hand, shows that when shear stresses are applied to a plate, they produce
strains that are a function of both u and v displacements.20

The equation for the in-plane shear strain is

γ xy
d

dy
u

d

dx
v= +  . (104)
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Figure 66.  Shear displacement of plate.

The total in-plane displacement at any point in a plate is the sum of the normal displacements plus the
displacements induced by bending. Figure 67 shows the geometry associated with a plate in bending.9
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Figure 67.  Bending displacement.

The displacement along the z direction due to bending is z ×  sin(θ). Since θ is small, sin θ θ( ) = ,
and the displacement is zθ. In addition, from the geometry, it is clear that θ is the slope of the plate,
d/dx × w.
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The displacements of the midplane of the plate in the x and y directions are defined as u0 and v0,
respectively. Then the displacement in the x direction can be defined in terms of the midplane displace-
ment, the slope of the plate, and the location from the midplane as

u u z
d

dx
w= −0 0

 . (105)

Similarly, the displacement in the y direction is

v v z
d

dy
w= −0 0

 . (106)

The Kirchoff hypotheses state that plane sections remain plane. This implies that there is no
strain in the z direction. According to Kirchoff, the normal and shear strains in the z direction may be
written as

ε εz z
d

dz
w= = 0 (107)

γ γxz xz
d

dx
w

d

dz
u= + = 0 (108)

γ γyz yz
d

dy
w

d

dz
v= + = 0 . (109)

 .

When the displacements in equations (105) and (106) are substituted into equations (102)–(104),
the strain equation accounts for the midplane displacements and the bending displacements and is
written as

εx
d

dx
u z

d

dx
w= −0

2

2 0
(110)

εy
d

dy
v z

d

dy
w= −0

2

2 0
(111)

γ νxy y
u

x
z

d

dx

d

dy
w=

∂
∂

+
∂
∂

−0 0 02  . (112)
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These equations can be further simplified by defining the midplane strains as

ε0 0x
d

dx
u= (113)

ε0 0y
d

dy
v= (114)

γ 0 0 0xy
d

dy
u

d

dx
v= +  . (115)

Substituting equations (113)–(115) into equations (110)–(112) results in the strain equations written
in terms of the midplane strains:10

εx
d

dx
u z

d

dx
w= −0

2

2 0
(116)

ε εx x z
d

dx
w= −0

2

2 0
(117)

εy
d

dy
v z

d

dy
w= −0

2

2 0
(118)

ε εy y z
d

dy
w= −0

2

2 0
(119)

γ νxy y
u

x
z

d

dx

d

dy
w=

∂
∂

+
∂
∂

−0 0 02 (120)

γ γxy xy z
d

dx

d

dy
w= −0 02  . (121)

The midplane surface curvatures are now defined as follows:10

K
d

dx
wx =

2

2 0 (122)

K
d

dy
wy =

2

2 0 (123)
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K
d

dx

d

dy
wxy = 2 0  . (124)

Finally, the strain equations may be stated in matrix form:
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. (125)

5.2  Generalized Hooke’s Law for Nonisotropic Materials

For isotropic materials (properties are the same in any direction), the relationship between stress
and strain is independent of the direction of the force. Young’s modulus is the only elastic constant
required to describe the stress-strain relationship for a uniaxial force.

For a nonisotropic material, at least two elastic constants are needed to describe the stress-strain
behavior of the material. Consider, for example, the case of a nonisotropic plate made of a fiber-
reinforced material (fig. 68). The fibers are in direction 1, resulting in the direction 1 properties being
much higher than the direction 2 properties.

Reinforcement
in Direction 1

1

2

Figure 68.  Nonisotropic plate with fiber reinforcement.

A special case of anisotropy is the existence of two perpendicular planes of symmetry in material
properties. Such materials are referred to as orthotropic. This configuration is characteristic of a lami-
nated composite that may have different material properties in the perpendicular planes. In general, the
properties of the material are direction specific.
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The analysis of an orthotropic system must take into account the direction of the material proper-
ties. For such a system, the stress can be expressed for each direction as

σ ε1 1 1= E (126)

and

σ ε2 2 2= E  . (127)

Consider the case shown in figure 69; an applied load acts parallel to the fibers.

1

2

Undeformed

Force

Force

Deformed Shape

Figure 69.  Applied load parallel to fibers.

This type of loading produces stress in more than one direction within the plate and is referred
to as plane stress. The plate is elongated in direction 1 and contracted in direction 2. This illustrates the
Poisson’s effect, which may be defined as

ν ε
ε12

2

1
=

−
. (128)
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The total strain in the orthotropic material must consider the Poisson’s ratio effect for each
direction. The strain in the plate is now a function of several material properties:

ε
σ

ν ε2
2

2
12 1= −

E
(129)

and

ε
σ

ν ε1
1

1
21 2= −

E
 . (130)

Shear forces must also be considered in the plate analysis. Shear stress is related to the shear
strain by a material constant called the shear modulus (G). As with the normal stress, the shear stress (τ )
must be defined in terms of the direction of the material as follows:

τ γ12 12 12= G  . (131)

In general, the equations for strains can be expressed in terms of stress and the orthotropic
material properties (Young’s modulus, Poisson ratio, and the shear modulus) as

ε
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ν
σ
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1
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2

2
= −

E E
(132)

ε σ ν σ
2

2

2
12

1

1
= −

E E
(133)

γ
τ

12
12

12
=

G
. (134)

These equations can be expressed in matrix form as follows:
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(135)
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The 3 × 3 matrix in equation (135) is made up entirely of material properties for the orthotropic material.
This matrix is called the compliance matrix (S):

S
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Equation (135) may be rewritten to form an equation for the stress:
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Furthermore, ν12/E1 = ν21/E2, then the stiffness matrix (Q) can now be defined as the inverse of the
compliance matrix (S)     as follows:

Q S

E
E

E E
E

E

E E

E
E

E E
E

E E

G

= =

+ +

+ +

























[ ]

–
(– )

–
(–

–
(–

–
(– )

.–1

1
2

2 12 21 1
21 1

2

2 12 21 1

12 1
2

2 12 21 1
2
2

2 12 21 1

12

0

1
0

0 0

ν ν
ν

ν ν

ν
ν ν ν ν (138)

Finally, the stress equation can be expressed as a function of the stiffness matrix (Q) to further simplify
the equation:
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5.3  Plane Stress for Generally Orthotropic Plates

The previous discussion was limited to the case in which the load is either parallel or perpendicu-
lar to the principal material directions of the lamina; i.e., reinforcement fibers. In general, the loading is
not in the principal material direction. The equations for the generally orthotropic plates transform the
stress and strain into coordinates that coincide with the principal material directions. Figure 70 is a free-
body diagram of a composite laminate; it indicates the directions of the stress in relation to the direction
of the reinforcement fiber. Direction 1 is the direction of the fiber and direction 2 is perpendicular to the
fiber.
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xy θτ

xyτ

xyτ
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Figure 70.  Direction of stress.

The transformation of plane stress is a fundamental part of mechanics of materials. In the case
of composite materials, the idea is to transform the stress from the direction of the load to the principal
material direction. As shown in figure 71, the element is cut to produce an area, ∆A. A free-body
diagram is used to sum the forces in direction 1.
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Figure 71.  Sum force in direction 1.
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The sum of the forces in direction 1, for example, results in the following equation for σ1:

0 1= − ( ) − ( )
+ − ( ) − ( )
σ σ θ θ σ θ θ

τ θ θ τ θ θ

∆ ∆ ∆

∆ ∆

A A A

A A

x y

xy xy

cos cos sin sin

cos sin sin cos . (140)

From the free-body diagram of figure 72, the sum of the forces in direction 2 results
in an equation for σ 2:

0 2= − ( ) − ( )
+ ( ) + ( )
σ σ θ θ σ θ θ

τ θ θ τ θ θ

∆ ∆ ∆
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x

2

xy

12

x

y

θ

∆A

σ

σ

yσ

τ

τ

xyτ

Figure 72.  Sum force in direction 2.

Using figure 72, sum the forces in direction 1 to obtain an equation for τ12:

0 12= + − ( )
+ −( ) +

τ σ θ θ σ θ θ

τ θ θ τ θ θ
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∆ ∆

A A A

A A

x y

xy xy

sin cos cos sin

cos cos sin sin . (142)

Simplifying equations (140)–(142) and solving for the stresses in the direction of the principal material
direction yields the stress transformation equations:

σ σ θ σ θ τ θ θ1
2 2 2= + +x y xycos cos sin cos (143)

σ σ θ σ θ τ θ θ2
2 2 2= + −x y xysin cos sin cos (144)

τ σ θ θ σ θ θ τ θ θ12
2 2= − + + −( )x y xysin cos sin cos cos sin   . (145)
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Equations (140)–(142) can now be written in matrix form:
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The 3 × 3 matrix is known as the transformation matrix (T):

T = −

− −
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

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.
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2 (147)

Thus, the stress transformation equation (146) may be written in terms of (T) as follows:
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. (148)

Similarly, to transform from the 1-2 coordinate system to the x-y coordinate system, use the inverse
of the transformation matrix:
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The strains can be transformed in the same manner as the stresses. Equations (150) and (151) represent
the transformation of strain:
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However, the strain transformation equation (151) creates a numerical problem. The shear strain
term (γ12/2) is not compatible with the shear strain term from equation (139), γ12. To overcome this
problem, a factor of 2 is introduced into the matrix equations as follows:
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The resulting matrix is called Reuter’s matrix (R):

R =

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



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
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

1 0 0

0 1 0

0 0 2

. (153)

The shear strain values can be multiplied as needed to combine the transformation equations (148)–
(151) with the compliance equation (139). These derivations are provided in the Mathcad program listed
in appendix D. The resulting equation is as follows:
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Equation (154) illustrates the transformed stiffness relationship between the stresses and strains
for an orthotropic plate. This equation provides the stress-strain relationship in the x-y direction.
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Equation (154) is difficult to work with because of the number of matrices involved. However,
the equation can be simplified to three matrices by defining the transformed reduced stiffness matrix

(Q ):

Q T QRT R= − −1 1 . (155)

Finally, equation (154) may be written in terms of Q :
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The Q  matrix is a 3 × 3 matrix that represents the transformation of the stiffness matrix (Q). The terms
in the matrix contain four independent material properties and the angle between the reinforcement
fibers and the load.

5.4  Mechanics of Laminated Composite Plates

The strain equations for a plate in bending must now be related to a plate made from several
layers or lamina. Solving equation (156) for the strain values results in the following:
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The midplane strains and the curvatures can now be equated to the stress values by combining
equations (125) and (157),
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Simplifying equation (158) and solving for the stress matrix results in an equation for the stress in terms
of the midplane strains and curvatures:
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Equation (159) represents the stress in each ply of the laminate for an orthotropic plate.

5.5  Determination of Force and Moment Resultants

The resultant forces and moments acting on a laminate are a function of the stresses on each
layer through the thickness of the plate. The force and moment resultants are important for the analysis
of composite plates because the stress in the plate varies from top to bottom. The force and the moment
act at the midplane of the plate in the same direction as the stresses.

Figure 73 illustrates the normal and shear forces that act on a plate. The resultant force can be
found by the summation of the stress multiplied by the area. The sum of the forces can also be found
by integration of the stress multiplied over the thickness (t) of the plate, then multiplied by the area.
Figure 74 represents a cross section of a plate. The width (w) times an incremental thickness (dz )
represents the area over which the force is acting.

z

x

Nx Nx

Ny

Ny

Nxy

Nxy

Nyx

Nyx

y

Figure 73.  Resultant forces.

z = 

z = 0

t
2

z = –t
 2

dz

w

y

Figure 74.  Integration over width of plate.
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Equation (160) represents the forces acting on the plate:

σ σx xt

t

n

w dz w dz= −∫∑
2

2 . (160)

The width (w) of the plate occurs on both sides of the equation and cancels. This allows
the resultant force to be defined in units of force per unit length. The resultant force per unit length
at the midplane of the plate is defined as

N dzx xt

t

= −∫ σ
2

2 . (161)

Similarly, for the remaining directions of stress,

N dzy yt

t

= −∫ σ
2

2 (162)

 and

N dzxy xyt

t

= −∫ τ
2

2 . (163)

In matrix form, these equations can be written as
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σ
σ
τ2

2 . (164)

Figure 75 illustrates the moments acting on a plate. The resultant moments for the midplane
of each plate can also be calculated from the stresses. The moments are defined as the sum of the stress
multiplied by the area, multiplied by the moment arm with respect to the midplane. The moments are
also defined in terms of unit lengths. The moment equations are as follows:
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Figure 75.  Resultant moments on plate.
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2 (166)

M z dzxy xyt
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2  . (167)

In the same manner as the forces, the moments can be stated in a matrix equation:
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5.6  Laminate Constitutive Equations

Equations (164) and (168) define the forces and moments acting on the midplane of the plate
in terms of the plate stresses. Equation (159) defines the stresses acting on any layer in the plate in terms
of the midplane strains and plate curvatures. The midplane strains are functions of the midplane dis-
placements and the midplane curvatures are functions of the displacement (w). Equations (159), (164),
and (168) are the plate constitutive equations.
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Equations (164) and (168) must be modified to define the midplane forces and moments for each
layer in the plate. This can be done by recognizing that the stress resultants can be expressed as the sum
of the stress resultant for each layer. Letting n represent the number of layers in the plate, the equation
for the forces becomes
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Similarly, the equations for moments are written as
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The integration parameters have now changed from the thickness of the plate to the location
of the top and bottom of each layer. Figure 76 illustrates the integration terms.
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Figure 76.  Layer location.
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The equation for the transformed stress, equation (159), can be substituted into the equations for
the midplane forces and moments. The resulting equations (171) and (172) state the forces and moments
in terms of the strain and curvatures:
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Integrating these equations is relatively simple because the matrices ε0 and K are not functions
of z and are not included in the integration. The plate stiffness matrix (Q ) is constant over the thickness
of any layer; equation (172) can be written as
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Performing the integration results in the following equation:
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The moment equation can also be simplified as
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Note that the midsurface strains (ε0) and the curvatures (K) are not part of the summations.

The stiffness ( Q ) and the hk terms can be summed outside equations (174) and (176) to form
new matrices, and the equations become
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and
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In equation (177), matrix A is called the extensional stiffness matrix. This matrix relates the
normal stress and strains similar to the modulus of elasticity. However, if the matrix terms A13 and A23
are nonzero and the plate has a shear load applied to it, normal stresses will be produced:

A Q h hk k k
k

n
= −( )[ ]−

=
∑  , .1 1

1

(179)

The thickness of the kth layer can be defined as tk, where tk = hk – hk–1. Then equation (179) can be
written as a function of the thickness of the layer:
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The B matrix in equations (177) and (178) is called the coupling stiffness matrix. The B matrix
relates bending strains with normal stresses:
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This equation can also be stated as a function of the layer thickness (zk) and the distance from the layer
midplane to the center of the kth layer. Defining zk with the following equation,

z
h h

k
k k=

+ −1
2

. (182)

The equation for the coupling matrix B may be stated as

B Q t zk k
k
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k=
=
∑ , .1

1

(183)

The coupling stiffness matrix has substantial influence on a laminated composite plate. A non-
zero B matrix implies that an axial load will cause the plate to bend and/or twist. Also, any moment
applied to the plate will cause extension of the plate midplane. This coupling between bending and
extension is key to understanding composite plates, and neglecting the effects of the B matrix could be
catastrophic to a composite structure.

The D matrix in equation (178) is called the bending stiffness matrix. This matrix relates
the plate curvatures with the bending moments:

D Q
h h

k
k k

k

n
=

−











−

=
∑ , .1

3
1

3

1 3
(184)

The equations for D can also be written in terms of tk  and zk :

D Q
t

t zk
k

k k
k

n
= +











=
∑ , .1

3
2

1 12
(185)
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5.7  Effective Engineering Properties for Laminated Composite Plates

The effective engineering properties are determined from the A, B, and D matrices. The concept
is to determine the longitudinal Young’s modulus (Ex), transverse Young’s modulus (Ey), shear modulus
Gxy, and longitudinal Poisson ratio (νxy) of the laminate (plate) from the E1, E2, G12, and ν12 material
properties of one of the layers. A plate can be designed and optimized by varying the angles of the
reinforcement fibers in each layer.

Recalling Hooke’s law for an isotropic plate, Ex = σx/εx. Similarly, the relationship developed
for laminates relates the midplane force to the axial strain:

E
N

hx
x

x
=

ε
, (186)

where h is the laminate thickness.

Equations (177) and (178) may be combined to form a linear system of equations. The force
and moment equation may be written as follows:
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
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
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This relationship is a system of six equations and six unknowns. The midplane strains and curvatures
are the unknowns. The A, B, and D matrices are constants.

The force and moment matrix can be defined to determine the effective material properties
for the composite. In the symmetric case, the layers above the midplane are identical to the layers below
the midplane, resulting in zero values for the B matrix. This greatly reduces the size and complexity
of the solution. For this analysis, however, the case of nonsymmetric plates is considered.

5.8  Calculation of Effective Material Properties

The solution to the system of equations (187) is best demonstrated through an example prob-
lem. A Mathcad solution sheet (app. D) contains the calculations used in this example. Consider,
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for example, a plate that is made up of four fiber-reinforced layers as shown in figure 77. The angles
of the reinforcements are 0° and 45° and each layer is 0.005 in. thick.

z

x

θ = 0˚

θ = 45˚

θ = 45˚

θ = 0˚

Midplane

Figure 77.  Angle of fiber reinforcement.

The following material constants are assumed for an arbitrary composite material:

•  Young’s modulus in the principal material direction 1:  E1 = 20.01 × 106 lbf/in.2

•  Young’s modulus in the principal material direction 2:  E2 = 1.301 × 106 lbf/in.2

•  Shear modulus in the principal material direction 1–2:  G12 = 1.001 × 106 lbf/in.2

•  Poisson’s ratio in direction 1–2:  ν12 = 0.30

•  Poisson’s ratio in direction 2–1:  ν21 = ν12E2/E1.

The compliance matrix is determined as follows from equation (137):

S

E E

E E

G

=

−

−














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





=

× − × ×

− × × ×

× × ×



















− −

− −

−

1
0

1
0

0 0
1

4 998 10 1 499 10 0 10

1 499 10 7 686 10 0 10

0 10 0 10 9 99 10

1

12

2

21

2 2

12

8 8 0

8 7 0

0 0 7

ν

ν
. .

. .

.

lbf

in.2
(188)

The stiffness matrix, inverse of the compliance matrix, is calculated from equation (138):
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Q S= =
× ×
× ×

×












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


−1

7 5

5 6

6

2 013 10 3 926 10 0

3 926 10 1 309 10 0

0 0 1 001 10
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. .

.

lbf

in.2
(189)

The geometry of the layup is then used to determine the transformation matrix. These data are presented
in detail in the Mathcad solution sheet (app. D). The transformation matrix is derived from the stress
transformation equation. The matrix is solved for each ply angle:

Tn

n n n n

n n n n

n n n n n n

= −
− −


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

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


cos sin sin cos

sin cos sin cos
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θ θ θ θ
θ θ θ θ

θ θ θ θ θ θ

2 2

2 2

2 2

2

2 (190)

Ply 1 Ply 2:

Ply 3 Ply 4

2:

. .

. . –

– . .
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. .

. . –

– . .
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T T
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1 1
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. (191)

As previously described, Reuter’s matrix (R) is used to condition the Q  matrix:

R =
















1 0 0

0 1 0

0 0 2

. (192)

The Q  matrix represents the stiffness and transform matrix; the Q  matrix is calculated for each
ply using equation (193):

Q T QRT Rn n= − −1 1 . (193)
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Q2

6 5 6

5 6 6
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Q3
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Q4
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As expected, the plies with the same angles are equivalent.

The A matrix, or the extensional stiffness matrix, is calculated using equation (180):

A Q tk k
k

= =
× × ×
× × ×
× × ×




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
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. . .

(198)

The B matrix, or the coupling stiffness matrix, is calculated using equation (183). In the case
of a symmetric plate, the B matrix is zero:

B Q t zk k
k
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
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




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∑
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(199)

The D matrix, or the bending stiffness matrix, is calculated using equation (185). These values
indicate how the bending moments will affect the plate curvatures:

D Q
t
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k k
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. . .

. . .

(200)

Since the A, B, and D matrices are defined, equation (187) can be solved for the strains
and curvatures. However, the loads must first be defined. In the Mathcad solution sheet, the load
matrix is created to represent the forces and moments at the midplane of the laminate. The load matrix
is from equation (187). In the first case, a uniaxial load is applied in the x direction:
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A global matrix that represents the stiffness matrix in equation (187) is constructed from the A,
B, and D matrices. Equation (187) may now be written in terms of the loads and the global stiffness
matrix:
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This system of equations represents a plate with a uniaxial load applied in the x direction.
There are six equations and six unknown strain and curvature values. A Mathcad subroutine, lsolve,
is used to find a solution to the system of equations. The lsolve function returns values for strains
and curvatures. Hooke’s law can then be applied to determine Young’s modulus and Poisson’s ratio:

•  Young’s modulus in x:

E
N

hx
x

x
= = ×

ε0

71 13 10.
lbf

in.2
(203)

•  Poisson’s ratio:

ν
ε

εxy
y

x
=

−
= × −0

0

13 17 10. . (204)

The effective modulus in the y direction is found by assuming a unit force in the y direction and
setting all other forces and moments to zero. The system of equations is now solved with the boundary
conditions for a uniaxial load in the y direction. Then based on Hooke’s Law, Young’s modulus and
Poisson’s ratio can be calculated:
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•  Young’s modulus in x:

E
N

hy
y

y
= = ×

ε0

62 0972 10.
lbf

in.2
(205)

•  Poisson’s ratio:

ν
ε

εyx
x

y
=

−
= × −0

0

25 87 10. . (206)

The effective shear modulus is found by assuming a unit force in the x-y direction and setting all
other forces and moments to zero. The shear modulus (Gxy) is a function of the shear load and the shear
strain:

•  Shear modulus:

G
N

hxy
xy

xy
= = ×

γ 0

63 22 10.
lbf

in.2
(207)

5.9  Comparison of Results for the Symmetric Solution

The engineering properties for a symmetric laminate can be compared to solutions from a num-
ber of sources. This comparison illustrates that the method used for finding a solution to the constitutive
equation (187) significantly affects the accuracy of the calculations. For example, Halpin9 reduces the
constitutive equations by assuming the A1,3 and A2,3 terms in the A matrix are zero. This results in the
following equations for the material properties:

E
A A A

A hx _
, , ,

,
,Halpin =

− ( )11 2 2 1 2
2

2 2

(208)

E
A A A

A hy _
, , ,

,
,Halpin =

− ( )11 2 2 1 2
2

11

(209)

 and

G
A

hxy _
, .Halpin = 3 3 (210)

Nettles,20 on the other hand, includes all the terms in the A matrix and is able to develop the following
equations for the materials properties:
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and
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Although Nettles’ method is an improvement over the Halpin method, these equations do not apply
to the nonsymmetric case. When the A1,3 and A2,3 terms are set equal to zero, the Nettles20 equations
reduce to the Halpin9 equations.

Table 11 is a comparison of results obtained from several commercially available computer
programs for laminated composite plate analysis.

Exact

Nettles

Halpin

Inplane

Patran

1.13 × 107

1.13 × 107

1.18 × 107

1.18 × 107

1.18 × 107

2.1 × 106

2.1 × 106

3.47 × 106

3.48 × 106

3.48 × 106

3.22 × 106

3.22 × 106

3.08 × 106

3.08 × 106

3.08 × 106

Ex Ey Gxy

Table 11.  Results from different laminated plate solution techniques.

As expected, the Nettles equations provide the same solution as the exact solution. However,
these equations do not work for the nonsymmetric case. The Halpin, Inplane, and Patran solutions
overestimate the stiffness of the composite in the transverse direction and underestimate the torsional
stiffness for the composite.

It is difficult to determine the specific effects this type of inaccuracy could produce. It is the
intent of this study to indicate that these inaccuracies can be avoided by using the solution techniques
developed in the previous sections.
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5.10  Determination of Strain

Section 5.9 determined the effective material properties of the laminated composite plate. It is
also desirable to determine the stress and strain in each layer of the plate. This is accomplished by using
constitutive equations (177) and (178) to determine the midplane strains and curvatures. The total strain
in each ply or layer is then found by using equation (125). The resulting strains are then transformed by
equation (150) to the principal material direction. As shown previously, the constitutive equation can be
solved for the midplane strains and curvatures.

For example, assume the laminated plate in the first example is loaded with 1,000 lbf in the
x direction. The plate is 5 in. wide. The x direction is parallel to the 0° plies. The calculations for this
example are contained in the Mathcad solution sheet (app. D).

As stated in the problem definition, a force is applied in the x direction. The plate is 5 in. wide
so Nx would be calculated as follows:

N x =
1 000

5
, lbf

in.
(214)

The load matrix in equation (187) will contain the following values:
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(215)

The midplane strains and curvatures can be determined in the same manner as demonstrated
in section 5.9. The solution indicates that the midplane strain includes axial, transverse, and shear
strains, while curvatures are zero:

   Midplane Strains: Midplane Curvatures:

  ε0
48 82 10x = × −. Kx = ×0 100

  ε0
42 8 10y = − × −. Ky = ×0 100

  γ 0
44 6 10xy = − × −.    Kxy = ×0 100 .

Equation (125) can be used to transform the midplane strains and curvatures into the strains in each ply.
To determine the strains in the first 45° ply, define zply as the distance from the midplane to the center
of the ply:  zply = 2.5 × 10–3 in.
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The strains in the first 45° ply in the x-y coordinate system are calculated from the midplane
strain and curvatures (eq. (125)). The values are then transformed into the principal material directions
for the 45° ply with equation (150). The details of the calculation can be found in the Mathcad solution
sheet (app. D). The resulting matrix is the strain in the principal material direction:
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. (216)

5.11  Determination of Stress

The stress values can be calculated from the strain by applying equation (155) to determine

the Q  matrix for the given ply. The Q  value for the 45° ply is as follows:

Qn =
× × ×
× × ×
× × ×
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(217)

The strain in the 45° ply for layer 2 is determined from equation (125). Equation (156) is then used
to determine the stresses in the ply:
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Now use equation (148) to transform the ply stress into the principle material direction:
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5.12  Determination of Displacement

The deflection of the plate is found from the midplane strains and the curvatures of the plates.
Since these values are known, the deflections can be found by integration:
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∆x dx z dxxx
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The limits of integration are along the edge of the plate. In the example, the plate is symmetric. As a
result, the coupling stiffness matrix and the curvatures are zero. The Mathcad solution sheet (app. D)
includes the calculations; the curvature values are included for the nonsymmetric case. In the example
problem, the deflection in the x direction is calculated as

∆x = × −8 82 10 3. in. (221)

5.13  Determination of Neutral Axis

The neutral axis is the plane of zero strain for any direction in an unsymmetrical plate.
The location of the plane may be determined from equations (125) and (187). For pure bending
in the x direction, the force and moment matrix is zero except for the moment about the x axis:
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Solving for the midplane strains and curvatures and then reducing the matrix equation yields
the following expression:
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The above equation can then be separated to form an expression for the midplane strains and curvatures.
Equation (125) can then be used to find the location of the neutral axis. These derivations are contained
in the Mathcad solution sheet (app. D).
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5.14  Comparison of Results to a Finite Element Model

A finite element model of a simple plate is developed to verify the previous set of equations.
The plate is 10 in. long and 5 in. wide. As in the previous example, the plate has four layers oriented 0°,
45°, 45°, and 0°. As shown in figure 78, the plate is clamped at the left end with a load of 1,000 lbf
applied at the right. The model uses MSC/Nastran as the finite element code.

10 in.

5 in.

θ
y

x

Figure 78.  Boundary conditions on finite element model.

The input for the composite material properties was calculated using equation (187). The effec-
tive material properties from equation (187) for the model were defined in the MSC/Nastran format by
using a MAT2 card. The input for the MAT2 card is represented by the following matrix equation:
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For the purpose of this example, the thermal effects are neglected. The above equation becomes
the stress-strain relationship of equation (139). As previously discussed, Q is the stiffness matrix where
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The material property data for the finite element code are calculated using equation (225).
The MAT2 input card is written to reflect the following Q:
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The properties of the composite plate are defined by the PCOMP command. This input is unique
to the MSC/Nastran code and requires no calculations. The input is listed for completeness as follows:

PCOMP, 1, , , 10000.0, STRN,

+, 1, .005, 0.0, YES, 1, .005, 45.0, YES,

+, 1, .005, 45.0, YES, 1, .005, 0.0, YES  .

The ply stress and strain in the principal material directions are calculated using the Mathcad
solution sheet with the geometry and loading from the example problem. The results are provided and
compared to the results of the finite element model below.

These results are the ply strains in the principal material direction for the 45° ply:

•  Laminated plate theory results:
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•  Finite element model results:
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These results are the ply stress in the principal material direction for the 45° ply:

•  Laminated plate theory results:
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•  Finite element model results:
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The deflection of the plate in the direction of the load (x) compared very well with the finite
element model:

•  Laminated plate theory results:

∆x = × −8 8 10 3. (231)

•  Finite element model results:

∆x = × −8 8 10 3. . (232)

The comparison of the results shows that the finite element model agrees perfectly with the Mathcad
solution for the plate under uniaxial load.

5.15  Conclusions From Laminated Plate Theory

As stated previously, the purpose of the laminated plate derivations and the development of the
Mathcad and finite element solutions is to create methods for the analysis of complex multilayered,
graphite-reinforced cementitious composite structures. The development of the Mathcad solution sheet
proved that there is no numerical constraint to the laminated plate theory as found in the transform
section theory (sec. 1.4). In addition, it has been determined that the material property data developed
previously are adequate for the analysis of any conceivable combination of layers and graphite orienta-
tions. An improvement has also been made to the accuracy of the solution method used to solve the
laminated plate equations.
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6.  ANALYSIS OF MULTILAYERED SYMMETRIC AND NONSYMMETRIC
GRAPHITE-REINFORCED CEMENTITIOUS BEAMS

Section 6 demonstrates that cementitious composite material can be analyzed using the laminated
composite plate theory. Section 5 verified the laminated plate equations for an arbitrary composite by
comparison to the results of a finite element model. The equations will now be applied to the analysis
of three graphite-reinforced cementitious beams subjected to pure bending.

The rule of mixtures is used to determine the effective E1 and E2 values. The shear modulus
and Poisson’s ratio values are taken from the results of the material properties tests. The laminated plate
theory is then used to determine the effective material properties for each of the beams. These properties
are used with the elastic beam equation to predict the deflection of each beam. The results from the
analysis are compared to the results from the test. In addition, the laminated plate equations are used
to derive a set of material constants for a finite element model. The results from the model are also
compared to the test results.

6.1  Introduction

As shown in figure 79, each beam will consist of two graphite-reinforced layers. The graphite
mesh in the first beam will not be rotated. In the second beam, both layers of the graphite mesh are
rotated 45°. In the third beam, the bottom layer of graphite is rotated 45° while the top layer will not
be rotated, producing a nonsymmetric laminated section.

0.25 in.

1.20 in.

Matrix Center Line

y
Graphite Mesh

0.125 in.

0.060 in.

z

Figure 79.  Cross section of multilayered composite beam.
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In each case, the laminated plate equations are used to determine the effective material constants.
Elastic beam equations, developed in section 4.11, are used to determine the deflection at the center of
each beam. The analysis is repeated for several load increments to produce a load versus deflection plot.

A finite element model is developed for each beam consistent with the methodology developed
in section 4.12. The MSC/Nastran finite element program is given the data for each layer in the form of
MAT2 and PCOMP input commands. The finite element model computes the deflection at the center of
the beam, and the model  is run with incrementing loads to produce the load versus deflection plot.

Finally, a comparison is made between the analytical data and the test data, and conclusions
are drawn based on these results.

6.2  Three-Section (Pure Bending) Testing

The beam is placed in a three-section bending test with the specimen supported over an 8.75-in.
span and loaded at two points, each located 1.375 in. from the center of the span. This is the same three-
section bending test that is described in section 4.10.

The deflections were measured at the center of each beam using a digital deflection gauge
(fig. 80). A cup was hung from the loading hook of the fixture. Loading was achieved by incrementally
placing a measured amount of lead pellets in the cup. The time between load increments was not con-
trolled but could be estimated at ≈30 sec. The displacement was recorded at each load increment. Each
beam was tested by the same method and with the same loading increment.

Figure 80.  Three-section bending test.
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The results of the beam tests, illustrated in figure 81, show that beam 1 [90,90] is much stiffer
than beam 2 [45,45]. As expected, beam 3 [45,90] has a stiffness value between beams 1 and 2. The 45°
layer is on the tension side of the pure bending test, which may explain why the beam behavior is close
to beam 2.
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Figure 81.  Deflection plot of multilayered beams.

6.3  Calculation of the Deflection Using Elastic Beam Equations

The deflection of the center of the beam was calculated for the same loads used in the three-
section bending tests. The elastic beam equation for this problem was provided in section 4.10.
The moment of inertia is calculated by I = bh3/12. The Young’s modulus is calculated from the lami-
nated plate theory. The Mathcad solution sheet (app. C) is used to perform the calculation to determine
the deflection at each load increment.

6.4  Determination of Effective Material Properties

The material properties for each layer of the composite are determined from the rule of mixtures
and the laminated composite plate theory. For example, using the equations developed in section 4.11,
the material properties of the fiber and matrix are as follows:
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lbf in.    

= ×
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. (233)
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The area of the graphite material is calculated from the manufacturer’s data as

A N

A N A

yarn
2

yarn

fiber yarn yarn

= 0.000175 in.  = 8

= . (234)

The area of each layer is the thickness multiplied by the width A1 = 0.120 in. × 1 in.:
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Thus, the values for the effective material properties can be calculated for each layer:

•  Young’s modulus (direction 1):

E V E V E

E
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1
55 045 10

= +

= ×

fiber fiber matrix matrix

2lbf in.. (236)

This procedure is used to determine the effective Young’s modulus for each layer in the composite beam.

The shear modulus and Poisson’s ratio values are determined from the material test results
(sec. 4.14). These effective properties are used with the laminate composite plate equations to determine
the effective material properties for the composite beam.

The Mathcad solution sheet (app. D) was set up for a two-ply plate consistent with the procedure
for determining the effective properties of a multilayer composite plate, described in detail in section
5.9. The bottom entry in each property array corresponds to the bottom ply of the plate and the geomet-
ric center of the beam is considered zero:
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The orientation, thickness, and centroid of each ply are as follows:
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The thickness of each layer is one half the beam thickness. It should be noted the exact thickness of each
beam varies (0.24 to 0.27 in.) due to imperfections in making the beams. The centroid of each layer is
measured from the geometric center of the beam.

The compliance matrix is then calculated for each layer in the composite. The stiffness matrix
(Qn) is then formed from the inverse of the compliance matrix:
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The subscript n refers to the layer number.

A stress transformation matrix is calculated from the angles given in the θn array:
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The Q  matrix can then be calculated from equation (241):

Q T Q RT Rn n n n= − −1 1 . (241)
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The extensional matrix A  can now be calculated from equation (242):
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The coupling stiffness matrix B, for a nonsymmetric matrix, can also be calculated from equation (243):
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The bending stiffness matrix D, equation (244), completes the calculations of the stiffness terms:
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The global stiffness matrix from equation (246) can then be determined by combining the A, B, and D
matrices:
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Equation (246) is written in terms of the global stiffness matrix as
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Additionally, equation (246) can be solved to determine the effective material properties
of the composite beam:
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The analysis was repeated for each of the three composite beams. Table 12 contains the effective
material properties for each beam.

[90,90]

[45,45]

[90,45]

4.12 × 105

2.40 × 105

3.20 × 105

4.12 × 105

2.40 × 105

3.20 × 105

7.50 × 104

1.88 × 105

1.15 × 105

Beam 1

Beam 2

Beam 3

Ex
(lbf/in.2)θ

Ey
(lbf/in.2)

Gxy
(lbf/in.2)

Table 12.  Effective material properties.

6.5  Comparison of Test Data to Analytical Predictions

The effective material properties can now be used with the elastic beam equation (124) to calcu-
late the deflections in the beam. To illustrate the steps in the analysis, the results obtained for beam 1
at a typical load increment follow:

y x
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3 4
1

( ) = + +( ) (248)
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




+ −



 ( ) + 



























. .
lbf

in.2
in.

1.94 lbf 3 in. 4.375 in. 2

25.39
lbf

in.2
4.375 in. 8.707

lbf

in.3

(254)

y2 = –0.062 in. (255)

The above analysis is repeated at incremental loads to generate a load versus deflection curve for each
beam.

The results of the three-section bending test can now be compared to the results calculated using
the elastic beam equation with the effective material properties derived from the rule of mixtures and the
laminated composite plate theory. A measure of the possible error associated with these calculations is
determined as follows:

•  Error from Young’s modulus test = 6.4 percent
•  Error from shear modulus test = 5.6 percent

•  Error % =  .6 4 5 6 8 52 2. % . % . %( ) + ( ) =

Error bars on figures 82–84 will reflect this measure of error.

As shown in figure 82, the predicted deflections for beam 1 [90,90] are in good agreement with
the test results, indicating that the effective Young’s modulus used in the predictions, Ex = 4.12 × 105 lbf/
in.2, adequately predicts the behavior of this two-layer composite.
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Figure 82.  Beam 1 comparison of predicted versus test deflections.

Figure 83.  Beam 2 comparison of predicted versus test deflections.

Figure 84.  Beam 3 comparison of predicted versus test deflections.
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Figure 83 compares the predicted deflections for beam 2 [45,45] with test results. The data
compare reasonably well with the test results, indicating that the effective Young’s modulus used in the
predictions, Ex = 2.31 × 105 lbf/in.2, also adequately predicts the behavior of this two-layer composite.

Figure 84 illustrates the results for the nonsymmetric beam 3 [90,45]. The test data for beam 3
[90,45] compare very well with the test results. The effective Young’s modulus calculated for this beam,
Ex = 3.2 × 105 lbf/in.2, was calculated using the same methods as the previous symmetric beams.

Based on these results, it can be concluded that the solution to the constitutive equations pre-
sented can be used to accurately determine the effective material properties for a symmetric or a
nonsymmetric multilayered laminated composite.

6.6  Analysis of Beams Using Finite Element Methods

The analysis of simple composite structures such as beams can be achieved using the methods
described in this TM. However, when the geometry or loading of the structure becomes more complex,
this method of analysis may be too difficult to apply. For that reason, it is important to extend the verifi-
cation process to include finite element modeling.

The input for the MSC/Nastran program is calculated from the equation for the stiffness matrix,
equation (257), Qn = [Sn]–1. The MAT2 input for beam 1 can be taken from the Qn matrix. For example,
the stiffness matrix for layer one of beam 1 [90,90] is calculated and given:

Q1

5 4

4 5

4

4 30 10 6 45 10 0

6 45 10 4 30 10 0

0 0 7 50 10

=
× ×
× ×

×

















. .

. .

.

. (257)

Incorporating these values into the MAT2 results in the following:

$ Description of Matrix Material:
MAT2,1,4.30+5,6.45+4,0.0,4.30+5,0.0,7.50+4,
0.,         0.,          0.,          0.,         0.

The orientation of each layer is described in the PCOMP command. An example of the PCOMP

command for beam 1 is provided below for reference:

$
PCOMP, 1, , , 10000.0, STRN,
+, 1, .1325, 90.0, YES, 1,.1325, 90.0, YES
$

The finite element model is generated in the same procedures as those verified in section 4.12.
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Figures 85–87 show that the results of the finite element models for each of the three beams
are in agreement with both the test data and the analytical solution from the elastic beam equation (86).

Figure 85.  Beam 1 comparison of finite element versus test deflections.

Figure 86.  Beam 2 comparison of finite element versus test deflections.
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6.7  Summary and Conclusions

The preceding results indicate that cementitious composites can be analyzed using the laminated
composite plate theory. This is a significant improvement over the methods based on the rule of mixtures
and the transform section methods. The composite plate theory has no limitations on the orientation of
the fibers or the geometry of the layup. As a result, the designer can strategically place and orient the
reinforcement fibers to optimize the design.

Figure 87.  Beam 3 comparison of finite element versus test deflections.
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7.  CONCLUSIONS AND RECOMMENDATIONS

7.1  Conclusions

This research establishes the procedures for producing, instrumenting, and testing graphite-
reinforced cementitious specimens to determine the material characteristics. Tensile tests are used to
successfully determine Young’s modulus and Poisson’s ratio. Iosipescu shear tests are used to determine
the shear modulus. Comparisons are then made to the material properties calculated from the mechanics
of materials approach for composite analysis; i.e., rule of mixtures. Consistent with the literature,2,9,10

it is determined that the rule of mixtures is accurate for determining the effective material property, E1,
provided the fibers are continuous and aligned in the direction of the load. However, the remaining
material properties, E2, v12, and G12 may not be accurately predicted by the rule of mixtures.

A modified transform section approach is used with the E1 value from the rule of mixtures to
accurately predict the deflection of a beam in pure bending with a single layer of graphite reinforcement.
A similar approach is used for a multilayered beam in pure bending. The beam analysis is extended to
include nonlinear material properties. The results compare well to test data.

Laminated composite plate theory is investigated as a means for analyzing even more complex
composites, consisting of multiple graphite layers oriented in different directions. Equations for the
effective material properties are derived based on the laminated composite plate theory. The equations
are arranged to form a system of simultaneous equations from which an exact solution can be found. A
Mathcad solution sheet is developed to make the calculations. An increase in accuracy is demonstrated
when this solution method is compared to other solution methods. The results of the Mathcad solution
sheet are verified with an example problem. A composite plate with known material properties is ana-
lyzed using the Mathcad solution sheet. The plate is then analyzed using a finite element model. The
results compare very well, demonstrating the accuracy of the solution method.

The analytical methods developed in this TM are demonstrated with the analysis and test of three
beams with various ply angles and layups. The effective material property for each beam is determined
by using laminated plate equations and the Mathcad solution program. In addition, a finite element
model is developed for each beam. The results of three-section bending tests are then compared to the
analytical results to determine the accuracy of the methods developed in this TM. The analytical results
compare very well to the test results.

The research presented establishes a methodology that can be used to determine the deflections
and stresses in graphite-reinforced laminated composites. In addition, it demonstrates methods of deter-
mining the appropriate material properties necessary for the analysis.
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APPENDIX A—MATHCAD SOLUTION SHEET:  RULE OF MIXTURES

Note:  This program is provided as an example only. The content of this file is similar to that
found in the text. However, this program is subject to modification and may not match the previous text.

A.1  Rule of Mixtures for a Composite Material

The rule of mixtures is a method for determining the effective properties of a composite material
based on the contributions of the individual constituents. This method assumes that the strains in the
fiber direction of a composite are the same in the fibers as in the matrix. Since the strain in the fiber
is the same as the strain in the matrix, the sections normal to the fiber direction remain plane after
stressing:

•  Determination of E1

Matrix

Matrix

Direction 2

σL∆

w∆Fiber

L

w

Deformed

Direction 1

1

σ1

2

The strain in direction 1, the fiber direction, is given by

.

The strain in the fiber direction is same for the fiber and the matrix:

  .

Applying Hooke’s law and assuming both the fiber and the matrix are linear:

.
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This relationship is similar to two springs acting in parallel. The total load (P) is carried by the load
in fiber (Pf) and the load in the matrix (Pm):

  .

Kf

Km
δ

P

The force equation can then be written in terms of the stress and area:

.

Now substitute the Hooke’s law equations for the stress terms to relate the force equation in terms
of strain and Young’s modulus:

.

Simplifying the equation,

.

The fiber volume fraction (Vfiber) and the matrix volume fraction (Vmatrix) can be defined as

.

In addition, the fiber volume fractions must satisfy the equation:

.
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Thus the expression for the effective Young’s modulus in direction 1 is as follows:

.

Determine the effective property in direction 2, perpendicular to the fiber direction,

Deformed

Matrix

Matrix

Direction 2

Direction 1

σ2

σ2

w∆

Fiber

w

The fiber and matrix transverse strains are not assumed to be equal. However, in the transverse
direction, the cross-sectional areas are equal and the load is constant across the area; therefore, the stress
is equal for the fiber and the matrix. Then the strains in the fiber and matrix can be written in terms
of the stress:

,

,

and

.

The total transverse deflection is the sum of the fiber deflection and matrix deflection:

.
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Defining the strains in terms of the deflection:

,

,

and

.

The transverse dimension over which the fiber and matrix strains act can be written in terms
of the fiber volume:

and
.

The deflection equation can now be defined in terms of strain:

.

Now the w term vanishes from both sides of the equation. Hooke’s law equations
can be substituted for the strains:

.

The stress term now vanishes from both sides:

.

Solving the above equation for the E2 term,

.
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Determination of the Poisson’s ratio between the transverse and the fiber directions:

Matrix

Matrix

Direction 2

σL∆

w∆Fiber

L

w

Deformed

Direction 1

1

σ1

2

.

As shown above, the deflection equation can now be defined in terms of strain:

  ,

,

and

.

Now simplify,

.

Substitute in the equations for the Poisson’s ratio:

.
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Determine the shear modulus (G12) by  assuming the shearing stress on the fiber and the matrix
is the same. This assumption means that the shear deformation can be written as

.

•  Shear strain in the matrix:

.

•  Shear strain in the fiber:

.

Matrix

Matrix

Direction 2

Direction 1

L

w

Fiber

τ

Shear strain in the fiber and transverse direction.

The shear deflection is a function of the shear strain and the width (w):

and

.
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As shown in the previous equations, the deflection for the matrix and fiber can be stated in terms
of the volume fractions, Vfiber and Vmatrix:

and

.

Then, substituting into the deflection equation and allowing the w term to vanish:

.

Finally, substitute the Hooke’s law equations for shear strain and allow the shear stress:

.

Now, this equation can be simplified by allowing the shear stress term to vanish and solving for G12:

.

Calculate the effective material properties of a cementitious composite:

Matrix

Deformed

Matrix

Direction 2

Direction 1

L

w

Fiber

τ

∆
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•  Material properties:

  
.

•  Fiber area in a graphite yarn:

  .

Thus, the expressions for the effective material properties can be calculated:

•  Young’s modulus in direction 1:

and

.
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•  Young’s modulus in direction 2:

and

.

•  Poisson’s ratio:

and

.

•  Shear modulus:

and

.

•  Composite Density

and

  
.

Now compare the results from the rule of mixtures to the results of tensile testing.
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•  Young’s modulus from the tensile test:

  ,

,

  ,

and
.
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Krenchel methods:

•  Calculate the effective material properties of a cementitious composite:

  .

•  Fiber area in a graphite yarn:

                          .

Thus, the expressions for the effective material properties can be calculated:

.
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•  Young’s modulus in direction 1:

.

•  Young’s modulus in direction 2:

and

.

•  Poisson’s ratio:

and

.

•  Shear modulus:

and

.

•  Composite density:

and

.

Now refer to Krenchel, p. 29:
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.

•  Krenchel case 2a

                         

  
.

•  Krenchel case 1a

  
.
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Direction of the Load

•  Krenchel case 2b

  .

These angles describe the load in relation to the fibers (see Krenchel3, pp. 17 and 26).

The n represents the number of groups of fibers; in this case, two groups:

  .

This represents the proportion fibers in each group; half of the fibers are in group 1 and the other half
are in group 2:

          

•  Efficiency factor:

  .

•  Makes the derivations easier (p. 27):

  
.
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•  Page 34 equations:

  .

•  Volume fraction for the fiber:

  .

•  Guess values to make the program solve:

  
.

Equations (28) and (32) from p. 27:

  .

Equations (29) and (33) from p. 27:

  .

Equation (34) from p. 27:

  .
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Solve three equations with three unknowns:

  
.

Now use equation (39) to calculate shear modulus, p. 29:

  
.
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APPENDIX B—MATERIAL PROPERTIES DATA
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Figure B.1.  Tensile test summary—six test articles.

Figure B.2.  Average transverse strain—five test articles.
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y = 0.388x  + 15.812
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Figure B.3.  Average tensile strain Dec_28_4.

Figure B.4.  Average transverse strain Dec_28_4.
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y = 0.3912x + 17.35
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Figure B.5.  Average tensile strain Dec_28_5.
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Figure B.6.  Average transverse strain Dec_28_5.
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y = 0.407x  + 29.64
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Figure B.7.  Average tensile strain Dec_28_6.

Figure B.8.  Average transverse strain Dec_28_6.
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y = 0.398x  + 16.653
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Figure B.9.  Average tensile strain Dec_28_7.

Figure B.10.  Average transverse strain Dec_28_7.
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Figure B.11.  Average tensile strain Dec_28_8.

Figure B.12.  Average transverse strain Dec_28_8.
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y = 0.4731x  + 28.708
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Figure B.13.  Average tensile strain article SG4.

Figure B.14.  Iosipescu shear test articles.
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y = 0.0719x  + 17.258
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Figure B.15.  Iosipescu shear test—article 2.
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Figure B.16.  Iosipescu shear test—article 4.
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y = 0.1149x + 9.18
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Figure B.17.  Cementitious material tensile strain.

Figure B.18.  Cementitious material transverse strain.
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APPENDIX C—MATHCAD PROGRAM FOR COMPOSITE BEAM IN BENDING

Note:  This program is provided as an example only.  The content of this file is similar to that
found in the text.  However, this program is subject to modification and may not match the previous text.

C.1  Mathcad Solution Sheet:  Calculate Deflection for Three-Section Bending Test—One
Graphite-Reinforced Section on Top With Linear Material Properties

C.1.1  Calculate the Deflection for a Beam in Pure Bending

The rule of mixtures method for calculating the effective material properties for a composite
beam will be verified by comparison to test data. A composite beam was made to the following
dimensions:

•  Graphite strands:

            .

•  Composite section:

                      .

wc

hg

hc

Graphite Section

Matrix Section

The fiber volume can be determined from the geometry of the test specimen. This test specimen
has nine yarns across the width:

                               

                        .
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The volume fraction for the matrix:

          .

The material properties of the graphite and matrix are the same as previously defined:

  
.

The effective material properties for the composite section of the beam can be calculated:

•  Young’s modulus in direction 1:

  
.

•  Young’s modulus in direction 2:

.

•  Poisson’s ratio:

.
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•  Shear modulus:

.

•  Composite density:

.

Now consider the composite beam composed of two homogenous materials. The top section of
the beam is made from a material whose properties are calculated from the rule of mixtures. The remain-
der of the beam is made from the matrix material. The moment of inertia for the beam can now be
calculated using the transform section method:

  .

•  Ratio for transform section:

.

•  Transform section by multiplying the width of the graphite sections by η:

.

•  Now calculate the centroid of the transformed section:

  .

•  Calculate the area of the top section:

  .
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•  Locate the centroid of the top section:

.

•  Calculate the area of the matrix:

.

•  Calculate the centroid of the matrix:

.

•  Equation to find the centroid of the transform section:

.

C.1.2  The Centroid of the Transform Section

The cross section of the composite is symmetric in the x direction. The x location of the centroid
is the center of the beam:

            .

•  Calculate the moment of inertia for the top section of the beam by using the parallel axis theorem:

   and    .

•  Moment of inertia of the top section in respect to its centroid:

  .

•  Area of the top section:

  .
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•  Distance from the center top section to the centroid of the section:

  .

•  Applying the parallel axis theorem:

  .

•  Total moment of inertia for the top section with respect to the centroid of the entire beam:

.

Now, using the same methods, calculate the moment of inertia for the matrix (bottom) section
of the beam:

and

,            .

•  Area of the matrix:

  .

•  Distance from the center of the matrix section to the centroid of the section:

  .

•  Moment of inertia for the matrix with respect to the centroid of the beam:

 .

•  Total moment of inertia for the transform section:

.
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The beam was then subjected to a three-section bending test. A rigorous analysis of the beam test
was performed to establish a base of comparison to finite element modeling and test data. The compari-
son will provide insight into the accuracy of the methods used for the analysis.

•  Free-body diagram of the beam:

a b

L

P P

P P

a

Derive the equation for the elastic curve from sum of the moment at x:

•  Section 1, x < a:

  .

P

V

M1

x
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•  Section 2, x > a but x < b:

  .

P

P

V

M2

x

a

•  Section 3, x > (a + b):

  .
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P

P

V

P

M3

x

a b

Summarize the equations. Replace the derivative with θ:

  .

Values from the test fixture and the test loads:

•  Maximum load from 5/2/00 test:

              .

•  Geometry of the test fixture:

                           .
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•  Input values to represent the boundary conditions:

                    

                                .

•  Guess values to start the program to solve for the constants:

                    

                      .

The elastic curve equations written to satisfy the boundary conditions:

•  For the boundary condition x = 0, at x = 0, y1 = 0:

  .

•  For the boundary condition x = a, at x = a y1 = y2:

  .

•  For the boundary condition x = (a + b), at x = a + b y2 = y3:

  .

•  For the boundary condition x = L, at x = L, y3 = 0:

  .
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Find constants to solve the above equations simultaneously:

  
.

Ends the program loop.

The above equations are solved simultaneously to find the constants. The constants are listed
below:

                

                .

The value for the moment of inertia is set to the value calculated from the rule of mixtures
and the transform section method. Young’s modulus for the matrix is used for the beam equations:

          

          .

Restate each elastic curve equation as a function of x:

•  Section 1: x < a:

  .
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•  Section 2: x > a but <  a+ b:

  .

•  Section 3, x > a + b:

  .

Check boundary conditions: x = 0 and y1 = 0 and y1 = y2 at x = a:

                      .

•  If x = a + b, then y2 = y3: 
23θθ

  .

•  If x = L, then y3 = 0:

  .

C.2  Mathcad Solution Sheet:  Calculate Deflection for Three-Section Bending Test—Three
Graphite-Reinforced Sections With Nonlinear Material Properties

C.2.1  Determination of Transform Section Properties

Cross section of composite beam:

•  Number of layers:
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y

0.05 in.

0.05 in.

0.05 in.

0.3 in.

0.075 in.

0.075 in.

x

5 in. Graphite Fiber 
and Matrix Material 

Matrix Material

•  Depth of each layer (bottom surface is zero):

  
.

•  Modulus for the graphite:

  .

•  Modulus for the matrix

  .

•  Ratio for transform section:

                 .
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•  Dimension of the composite section
              .

•  Dimension of the graphite section:

            

  .

•  Calculate the area of the fiber:

  .

•  Calculate the area of the matrix:

  .

•  Equation to find the centroid of the transform section:

                      
.

•  Centroid of the transform section:

  .

•  Moment of inertia of the transform section using the parallel axis theorem:

                          .
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•  Determine the distance from the center of the graphite to the centroid of the section:

  
.

•  Moment of inertia for each section:

            
.

•  Moment of inertia of the five-layer composite:

  .
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C.2.2 Calculate the Deflection for a Beam in Pure Bending—Consider the Nonlinear Nature
of the Material Properties

Beam is in pure bending (no shear) in section b. Free-body diagram of the beam:

a b

L

P P

P P

a

•  Sample values from the test fixture and the test loads:

   Thickness of the beam

   Load applied to beam  .

•  Geometry of the test fixture:

                      .

•  Input values to represent the boundary conditions:

                    

                                .

•  Guess values to start the program to solve for the constants:

                    

                      .
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Following are the elastic curve equations written to satisfy the boundary conditions:

•  For the boundary condition x = 0 and y1 = 0,

  .

•  For the boundary condition x = a; y1 = y2 and θ1 = θ2:

  .

•  For the boundary condition x = (a + b); y2 = y3 and θ1 = θ2:

  .

•  For the boundary condition x = L; y3 = 0:

  .

Find constants to solve the above equations simultaneously:

  
.

Ends the program loop.
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Now compare these equations with actual test results:

•  Values used in the beam equations:

            .

The load is applied by hanging weight centered in the ‘b’ section:

  .

Deflection data at the center of the 15-in. beam (x = 7.5 in.) :

.

Now repeat above analysis at each load step. Yload is the load data supplied to the elastic beam equation:

  

.
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The deflection calculated by the elastic beam equation is contained in ycal:

  

.

This Excel file contains the test data for the five-layer composite beam in bending (the UAH
canoe team supplied the test data):

The test data is compared to the results of the analysis.
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This Excel file contains the results of tensile test specimens. These data will allow the program
to consider the nonlinear properties of matrix material (tension).

•  Assign values to stress and strain data matrix:

            .

•  Guess values to initialize the program:

                                .
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Use Balaguru’s methods2 (least-squares methods):

  .

•  Find the minimum solution to the simultaneous equations:

  
.

•  The equation for strain from the resulting values:

  .

Compare the results of the derivation with the actual test data.
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Now, increase the stress to levels exceeding the tension test:

•  Stress equation:

  
.

Assume the stress ξ varies from 225 to 800 in increments of 25:

  .

•  Equation for the ‘simulated’ stress values:

  .

Plot the simulated stress and the results from the tensile test. The simulated stress projects
the curve to higher strain values:

•  Young’s modulus for the matrix changes from E to Er as the stress increases to 800:

                              .



161

•  In section 2 for the elastic beam equation,  x > a but < a + b:

            .

The beam equation has been modified to calculate the deflection at stress levels above the linear
range of the material:

  .

The deflection is calculated at increasing load levels:

  

.

Compare the results of the analysis with the results of the canoe panel-bending test:
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The analysis is repeated for the properties from compression testing of the cementitious material.

This Excel file contains data from compression cylinder testing of the cementitious material:

•  Equation to calculate the compressive Young’s modulus:

  
.

•  The highest value is at kj = 44:

  .

The beam equation has been modified to calculate the deflection at stress levels above the linear
range of the material:

  
.
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•  Sample calculation at maximum load value:

  .

The results of the analysis are listed in ycal_3:

  

.

The results using the compressive data compare very well to both the canoe panel data
and the results from using the projected tensile.
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APPENDIX D—MATHCAD SOLUTION SHEET:  LAMINATED COMPOSITE
PLATES—SYMMETRIC AND NONSYMMETRIC SOLUTIONS

Note:  This program is provided as an example only. The content of this file is similar to that
found in the text. However, this program is subject to modification and may not match the previous text.

D.1  Calculation of Effective Material Properties

It should be noted that for laminates that are symmetric about the midplane; i.e., the layers above
the midplane are identical to the layers below the midplane, the B matrix will be zero. In the case of
symmetric laminates, the equations for the effective properties can be greatly reduced. However, for the
purposes of this analysis, the case of the nonsymmetric laminates will be considered:

  

.

This relationship is a system of six equations and six unknowns. The midplane strains and curvatures
are the unknowns. The A, B, and D terms are derived previously and are now constants. The force
and moment matrix can be defined to determine the effective material properties for the composite:

  

.

The solution to this system of equations can best be demonstrated through an example problem.
The calculations for this problem will be made in a Mathcad Pro 2000 program file. Consider a lami-
nated plate made of four layers of fiber-reinforced material. The angle of the reinforcements is 0° and
45° and each layer is 0.005 in. thick.
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z

x

θ = 0˚

θ = 45˚

θ = 45˚

θ = 0˚

Midplane

•  Material constants are obtained by tensile and shear testing of the material:

  
.

•  Young’s modulus in the principal material direction 1:

  
.

•  Young’s modulus in the principal material direction 2:

  
.

•  Shear modulus in the principal material direction 12:

  .

•  Poisson’s ratio:

  .
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These properties are used to determine the compliance matrix:

  
.

The stiffness matrix is formed from the inverse of the compliance matrix:

  
.

Geometry of the layup is then used to determine the transformation matrix:

Ply thickness Ply angles

  
.
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The center of each ply must be located:

  

.

The transformation matrix is derived from the stress transformation equations:
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.

•  Reuter’s matrix:

  
.

The Qbar matrix represents the stiffness and transform matrix:

  .

Each ply has a Qbar matrix:

  
.
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•  Calculate the total thickness of the layup:

            .

The A matrix or the extensional stiffness matrix is calculated:

  
.

The B matrix or the coupling stiffness matrix is now calculated. In the case of a symmetric
laminate, the B matrix will be zero:

  .

The D matrix or the bending stiffness matrix is calculated:

  
.
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To find a solution to this system of equations, define a matrix V to represent the forces and
moments at the midplane of the plate. Then construct a “Global” matrix that represents the stiffness
matrix. A computer subroutine “lsolve” will be used to find the matrix for the strain and curvatures.
For the following equations to work in the Mathcad program, the matrices A, B, and D, must be made
dimensionless:

                      .

Define V as the force and moment matrix. Force and moment matrix will be set to zero initially:

                      
.

Create a global matrix to represent the A, B, and D matrices:

  
.
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The global matrix is equivalent to:

  
.

Find the effective modulus in the x direction by assuming a unit force in the x direction:

            
.

The lsolve function can be used to solve a linear system of n equations in n unknowns:

  
.

The lsolve function returns values for strain and curvature matrix. Young’s modulus and Poisson’s ratio
can be calculated:

            
.
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•  Poisson’s ratio

          .

Now to find the effective modulus in the y direction, assume a unit force in the y direction:

            
.

Now solve the system of equations for the strain matrix:

  

.

•  Young’s modulus in y direction:

            
.

•  Poisson’s ratio:

            .
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Now to find the effective modulus in the x direction, assume a unit force in the x-y direction:

            
.

Now solve the system of equations for the strain matrix:

  
.

The shear modulus is calculated by:

            
.

D.2  Determination of Ply Strains

Section D.1 determined the effective material properties of the plate or laminate. It is also
desirable to determine the stress and strain of each ply. This is accomplished by using the constitutive
equations to determine the midplane strains and curvatures.

For example, assume the laminated plate in the first example is loaded with 1,000 lbf
in the x direction. The plate is 2 in. wide; the x direction is parallel to the 0° plies:

          .  .
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The force applied in the x direction, set the first element of the V matrix equal to Nx. The values
in the matrix must be unitless:

  

.

Now solve the system of equations for the strain matrix:

  

.

Strains and curvatures at the midplane are found:

  .

Transform the midplane strains and curvatures into the strains in each ply. Now determine
the strains in the first 45° ply. zply is the distance from the midplane to the center of the ply:
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.

Transform these strains into the principal material directions for the 45° ply:

•  Transformation matrix for 45° ply:

  
.

•  Transformation equation:

             
.

•  Use Reuter’s matrix to convert to engineering strain:

             
.

•  Calculate the stresses within each ply. The stress can be calculated from the strain:

  
.
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•  Transformed reduced stiffness matrix for layer n = 2:

  
.

•  The stress for  45° ply in layer 2:

  
.

•  Transform the stress into the principal material direction:

             
.

D.3  Determine the Displacement of the Laminated Plate

The definition of the plate curvatures provides an equation to determine the out-of-plane
displacements for the plate. The curvature in the x and y directions is given by the following equations:

            .
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Since the curvatures are known values; i.e. constants, then w can be found by integration:

  
.

Example of the integration:

•  Limits of integration are along the edge of the plate:

          

            .

•  Example values ONLY!

                       .

•  Integrate the x curvature along the x edge of the plate:

  
.
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•  Integrate the y curvature along the y edge of the plate:

  
.

The x and y deflections can be found from the strains and the curvatures:

  .
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Midplane Strains Midplane Curvatures

  .

•  Remove the units:

  .

Now integrating the midplane strains and curvatures over the length x and the width y
of the plate:

  .
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Now integrating the midplane strains and curvatures for the y direction:

  .

D.4  Determination of the Neutral Axis

The neutral axis is the plane of zero strain for any direction in an unsymmetric laminate:

•  Strain equations in matrix form:

  
.
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•  Pure bending in the x direction:

  
.

•  Solving for the midplane strains and curvatures:

  
.

The equation can be reduced to the following:

  
.

Invert the B and D matrices; if B is singular, the program will set Binvrt = 0:

            .
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The above equation can then be separated to form an expression for the midplane strains and curvatures:

            
.

These equations are then substituted into the strain equation:

  .

The general form of the equation to determine the neutral axis is given as guess values:

                      

                      

                      .

The general form of the equations to determine the neutral axis is given as:

ε x B invrt
1 1,

M x⋅ Binvrt
1 2,

M y⋅+ B invrt
1 3,

M xy⋅+

Z neuX D invrt
1 1,

M x⋅ D invrt
1 2,

M y⋅+ D invrt
1 3,

M xy⋅+( )⋅+

...

ε y B invrt
1 2,

M x⋅ Binvrt
2 2,

M y⋅+ B invrt
2 3,

M xy⋅+

Z neuY D invrt
1 2,

M x⋅ D invrt
2 2,

M y⋅+ D invrt
2 3,

M xy⋅+( )⋅+

...

γ xy B invrt
1 3,

M x⋅ Binvrt
2 3,

M y⋅+ B invrt
3 3,

M xy⋅+

Z neuXY D invrt
1 3,

M x⋅ D invrt
2 3,

M y⋅+ D invrt
3 3,

M xy⋅+( )⋅+

...

.

The neutral axis is found using the Find command:

Z neuX

Z neuY

Z neuXY











Find Z neuX Z neuY, Z neuXY,( ):=   .
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The neutral axis for this example is at zero:

Z neuX

Z neuY

Z neuXY











0

0−

0











=   
.

Compare these results to the results from other methods:

•  Nettles equations:
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  .

•  Halpin equations:
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  .
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