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TECHNICAL PUBLICATION

STATISTICAL PROPERTIES OF MAXIMUM LIKELIHOOD ESTIMATORS
OF POWER LAW SPECTRA INFORMATION

1.  INTRODUCTION

A brief summary of the maximum likelihood estimation (MLE) procedure developed for estimating
power law spectral parameters in earlier works1,2 begins with the probability density function of the
astrophysics data set consisting of N detector responses yi, e.g., energy deposit, as

  

g y g y E E dE i Ni i
R

( ; ) ( | ; ) ( ; ) , , , ,qq qq= =Ú r f 1L (1)

where qqqqq denotes the vector of spectral parameters of an assumed energy spectrum f(E;qqqqq) to be estimated;
N is the number of detected events from observing range, R, of the instrument having response function, g,
and energy resolution, r. Then the corresponding likelihood function is

L g y E E dEi
Ri

N
( ) ( | ; ) ( ; )qq qq=

È

Î
Í
Í

˘

˚
˙
˙Ú’

=
r f

1

(2)

and the ML estimate of qqqqq, say qqqqqML, is chosen so that for any admissible value of qqqqq, L(qqqqqML) ≥ L(qqqqq) or
equivalently, log[L(qqqqqML)] ≥ log[L(qqqqq)].3 In practice, qqqqqML can be obtained from equation (3) using an opti-
mization routine, such as the Nelder-Meade simplex search algorithm,4 to yield

qq qq
qq

ML =
{ }
min ( ) ,O (3)

where the objective function, O, in equation (3) is defined as O(qqqqq) = –log[L(qqqqq)] for this minimization
algorithm so that minimizing O(qqqqq) maximizes log[L(qqqqq)] as desired, and where the integral appearing in
equation (2) and thus intrinsic to equation (3) can be very accurately evaluated by numerical methods such
as the method of Gaussian quadratures.5 The Nelder-Mead algorithm does not require gradient information
which is a vital consideration in selecting an optimization algorithm for this application because some
energy spectra, such as the broken power law, are not differentiable everywhere.
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The MLE theory generally leads to lower bounds on the statistical errors (standard deviations) of
the spectra information and the existence of such a bound, called the Cramer-Rao bound (CRB), is the
bound below which the variance of an unbiased estimator cannot fall. This implies that irrespective of the
method used to quantify the parameters from the data, there is a lower bound on the precision that cannot
be superseded.6 In the multiparameter case, if   

)
qq      is any unbiased estimator of qqqqq, then

  
var( )

log[ ( ; )] log[ ( ; )])
qq

qq
qq

qq
qq

≥
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˙
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N

g y g y
T

1
(4)

in the sense that the difference of these two matrices is positive semidefinite. The right-hand-side matrix in
equation (4) is the CRB7 and notationally will be referred to as I–1(qqqqq), where I(qqqqq) is frequently called the
information matrix; the notation < . > denotes “expected value”; and the superscript T stands for vector
transpose. Thus, the variance of one component of   

)
qq, ˆsay ,qi is bounded below as var( ˆ ) ( ),qi ii≥ -I 1 qq where

Iii
-1( )qq  is the ith diagonal element of I-1( )qq . When qqqqq consists of a single spectral parameter, e.g., a simple

power law energy spectrum is assumed, the CRB is the right-hand side of the inequality

var( ˆ)
log ( ; )

.q
q

q

≥
∂ [ ]

∂
Ê
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ˆ

¯̃

1
2

N
g y (5)

Additionally, ML estimators generally possess the favorable large sample properties of consistency
(unbiased) (P1) and normality (P3).6,8,9 This Technical Publication (TP) investigates the conditions whereby
these two properties, along with efficiency which is attainment of the CRB and is referred to as property P2
in this TP, are attained for an assumed simple power law energy distribution and a broken power law
distribution, with emphasis on practical applications to instrument design and data analysis.

1.1  Simple Power Law Energy Spectrum

The simple power law suggests that the number of protons detected above an energy, E, is given by:

N E M
E

ES A
A

( ) ,> =
Ê
ËÁ

ˆ
¯̃

- +a1 1
(6)

where E is in units TeV, a1 is believed to be ª2.8, and MA and EA are numbers associated with the detector’s
collecting power (combination of size and observing time). In statistical terms, NS is assumed to represent
an average number of events, while the actual number to be observed on any given mission would follow
the Poisson probability distribution with mean number NS. The probability density function for galactic
cosmic ray (GCR) event energy, E, is then given by
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f a
a a
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S E
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E E E E( ) =
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1

2
1 1 2

1
1 1

1 for (7)

over an energy range [E1, E2] that does not depend on the parameter a1. Because the actual incident
particle energies are never observed, but only a measure of their energy deposition from their passage
through the detector, the random variable Y is introduced to represent the detector’s response, e.g., energy
deposition, of a GCR proton of incident energy, E, and its stochastic response function, g, with energy
resolution, r, which may or may not be energy independent. For specificity, a response function, g, based
on simulation studies of a thin sampling calorimeter (TSC) concept for the Advanced Cosmic-ray Compo-
sition Experiment for the Space Station (ACCESS) will be used. It has a planned 3-yr program life cycle
and is composed of a carbon target and sampling calorimeter. The TSC area is 1 m2 with a target ª0.7
proton interaction lengths thick, sampled by X/Y pairs of square scintillating fibers. The fibers in the target
are 2 mm thick and provide the approximate position of the interaction. The calorimeter consists of upper
and lower parts totaling 25-radiation length- (rl-) thick lead and contains 28 X/Y pairs of 500-mm square
scintillating fibers. The upper 3-rl-thick calorimeter is sampled each 0.5 rl, and the lower part is sampled
each 1.0 rl. The total weight of the target and calorimeter is ª2,600 kg, and the collecting power param-
eters, MA and EA, are estimated to be 160 and 500 TeV, respectively, implying that this TSC is expected to
observe 160 proton events above 500 TeV over its expected 3-yr life cycle.

The TSC performance predictions are based on the geometry and tracking particle physics simula-
tion program (GEANT) simulations of energy deposition for monoenergetic protons at specified energies
at 0.1, 1, 10, 100, 1,000, and 5,000 TeV for this candidate detector. The Gaussian distribution was found to
provide a reasonable description of the distribution of energy depositions at each of these incident ener-
gies.10 The mean detector response and the rms response were both found to be well approximated by a
linear function of incident energy, E, in the range of interest for this study, which is typically in the range of
20 to 5,500 TeV. Thus, the mean energy deposition, Y, for a given incident energy, E, is defined to be mY|E
= (a + bE) and the rms response defined as sY|E = (c + dE), where the coefficients a, b, c, and d were
estimated from the GEANT simulation results.

Before investigating the properties of MLE for the TSC instrument, it is instructive to consider the
concept of a zero-resolution instrument or so-called ideal detector because it sets an upper bound on the
expected performance of any real detector of equal collecting power. This measurement bound is deter-
mined by the CRB for the ideal detector which in turn establishes the limit in attainable precision with
which unbiased spectra information can be obtained from a given science mission by any conceivable
instrument with equal or less collecting power. Hence, it is useful in crafting realistic measurement goals
for new science missions.

An ideal detector’s energy resolution, r,  is equal to zero, so the standard deviation sY|E is zero for
all GCR event energies, E. Hence, the incident GCR energies are precisely known from the inverse mean
response, so that for the TSC having linear mean response gives E = (Y – a)/b, and using equation (5)
provides the CRB as the right-hand side of the inequality:
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and is asymptotically attained by the ML estimator. A key question then arises, “For what values of N is this
asymptotic property P2, as well as P1 and P3, achieved by MLE?” A battery of simulations was conducted
to study this question consisting of 10,000 simulated missions for each of several values of N ranging from
50 to 52,000* events per mission and with GCR energies from the energy range of 20 to 5,500 TeV.  The
ML estimate aML was obtained for each mission by solving

∂
∂
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in terms of a1 for the ideal detector and then also for a 40-percent resolution Gaussian detector (the TSC)
by application of equation (3). For comparison, the estimation technique referred to as the “method of

moments” is included for the ideal detector (r = 0) for the case N = 200 events and N = 52,000 events, and

consists of equating the sample mean E to the population mean as

E
E E
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2
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1
2

1 1

1 1 (10)

and then solving the nonlinear equation (10) in terms of â1.2 Figure 1 shows that MLE provides an unbi-
ased estimate of a1 when N ≥ 1,000, but with an ever-increasing bias as the number of events diminishes.
Note that even though aML is biased when N = 200 for the 40-percent resolution Gaussian TSC, its bias is
significantly less than the bias of the method of moments estimator â1 for the ideal detector having perfect
energy resolution.

An analytical expression that allows one to compute the bias of aML for the ideal detector can be

constructed by noting in equation (9) that aML is a function of the logarithm of the event energies by the

term 
1

1N
Ei

i

N

log[ ]
=

Â . Thus, the random variable W = log[E] is introduced having probability density

function

f w
E E e

E E E E
E w E
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( )
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, log[ ] log[ ]
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£ £
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1 1 2

1

1 2 1 2
1 2
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1 1
(11)

*The TSC used in the ACCESS concept study would detect 52,000 events on average over the energy
range of 20 to 5,500 TeV when the spectral parameter, a1, is assumed to be 2.8.
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Figure 1.  Mean estimates of aML
 
as a function of the number of events, N,

showing a bias for N<1,000. Triangle marker at N = 200 and 52,000
is for method of moments.
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where d w a a= - = - +log[ ] log[ ],E E E E E E1 2 1 2 1 2
1 1 , and, by the central limit theorem, 
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N Ws . Consequently, the probability distribution of the ML
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Figure 2.  Standard deviation of aML and the CRB as a function of N.

in terms of aML for various values of Z. Letting Z vary from –5 to 5, setting N to each of the number of
events N used in figure 1, and then numerically evaluating the mean of aML from the probability density
function constructed from equation (13) gives the solid curve shown in figure 1, indicating good agreement
with the simulation results.

An interesting observation from figure 1 is that one would likely conclude, and incorrectly, that a
significant difference between the slopes of two cosmic-ray elemental species exists if their respective
number of events were significantly different from each other and at least one had fewer than 1,000 events.
This is because for two given cosmic-ray elemental species, A and B, with simple power law parameters, a
and b, the hypothesis H0: a – b = 0 (same “slopes”) versus H1: a – b π 0 uses the test statistic aML – bML
that will inherit the bias(s) shown in figure 1 when N is <1,000. Thus, an interesting study would be to plot
the estimate of the slope parameter for each of several elemental species as a function of N comprising their
respective data sets to see if it resembles figure 1. It should also be understood that this bias as a function
of N would be even worse had the method of moments estimation procedure been used to estimate the
spectral parameters as previously noted in figure 1.

A comparison of the standard deviation of aML for the ideal detector with the CRB determined
from equation (8) as a function of the number of events N is depicted in figure 2 and clearly shows that aML
attains the CRB for N > 100. The standard deviation of the method of moments estimator â1 for the ideal
detector is also provided for comparison for N = 200 and N = 52,000, and note once again that MLE
provides a superior estimator.

The comparison for N = 52,000 (rightmost markers in fig. 2) is somewhat visually misleading
because of the scale of the vertical axis. Their actual values are 0.008, 0.012, and 0.008 for aML, â1, and
the CRB, respectively, and the ratio 0.012 to 0.008 is 1.5 for the method of moments and 1.0 for MLE,
which is a measure of the efficiency of the estimators and again shows MLE is far superior to the method
of moments. Simply put, the improvement in measurement precision provided by MLE over the method of

Standard Deviation of ML Estimator and CRB for Ideal Detector
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Figure 3.  MLE and method of moments as a function of instrument energy resolution
for the proposed TSC with Gaussian response function.

moments can be roughly equated to doubling the collecting power of the instrument, because doubling the
collecting power reduces the standard deviation by 1 2/  when the CRB is attained. Furthermore,
this ratio of ª1.5 remained steady as the detector resolution varied from zero to 50 percent, as shown in
figure 3. This fact, coupled with the better performance in achieving P1 as previously discussed, explains
why MLE is superior to the method of moments when estimating power law spectra information.

Property P3 is investigated using a frequency histogram of aML based on the 10,000 simulated
missions when N = 50 events per mission and shows a significant right-hand skewness (fig. 4(a)), and thus,
a clear departure from normality (Gaussian fit is illustrated as smooth curves in fig. 4(b)), while a similar
comparison for the case N = 52,000 shows aML is very normally distributed. Visual studies of the interme-
diate values of N showed the frequency histograms to be normally distributed in appearance for N ≥ 1,000 and
is in concert with the bias study depicted in figure 1.

Figure 4.  Frequency histograms of aML for 10,000 simulated missions with (a) N = 50
and (b) N = 52,000 events, using the TSC with its 40-percent resolution Gaussian
response function.
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Figure 5.  Frequency histogram of aML based on 10,000 simulated missions with N = 50
using an ideal detector. The smooth curve is the theoretical distribution of aML
obtained from equation (13).

A relative frequency histogram of aML based on 10,000 simulated missions with N = 50 per mis-
sion using an ideal detector having zero energy resolution is shown in figure 5. Also shown is the theoreti-
cal distribution of aML obtained from equation (13) with parameters set to N = 50, E1 = 20 TeV, E2 = 5,500
TeV, and a1 = 2.8 and illustrates the close agreement between simulation and theory.

Solving equation (3) to obtain the ML estimate for the case where the events are measured by a real
detector having nonzero energy resolution is straightforward, and checking consistency (P1) and normality
(P3) is easily performed. However, checking efficiency (P2) can be quite formidable because of the term
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required to compute the CRB, coupled with the fact that the detector response function, g, in equation (14)
can be quite complicated. For example, g could be Gaussian with non-negativity constraint y > 0 and
energy-dependent resolution function, r(E), that in turn requires an energy-dependent normalizing coeffi-
cient. Fortunately, equation (14) can be numerically evaluated using the symmetrized form of the numeri-
cal derivative,11

¢ =
+ - -

f x
f x h f x h

h
( )

( ) ( )
2

  , (15)

to approximate the derivative in equation (14) and in conjunction with the method of Gaussian quadratures
to calculate the definite integrals. The fact that the CRB in equation (8) for the ideal detector must match
the CRB obtained from equation (14) when the detector resolution is zero (rÆ0) provides a means to tune
the numerical differentiation parameter, h, and the integration parameters, e.g., the upper integration limit
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for y as well as the number of partitions used in the numerical integration in both integration variables, E
and y, in equation (14). For the TSC instrument with a data analysis range of 20 to 5,500 TeV, setting h to
0.0001 and the upper integration limit of y to 35,000 GeV in place of infinity in equation (14), and using
10-point Gaussian quadratures over subintervals over both integration ranges provides the somewhat sur-
prising result of 13-decimal-place accuracy in the numerical evaluation of equation (14) when compared to
the exact value obtained from equation (8) for the ideal detector. This accuracy in the numerical evaluation
of equation (14) was independently confirmed using the numerical integration routine in MATHEMATICA®.

Figure 6 illustrates the convergence of the standard deviation of the ML estimator aML to the CRB
computed using equation (14) for a 40-percent resolution Gaussian detector as a function of N. The stan-
dard deviation of aML is based on a battery of 10,000 simulated missions for each value of N, where N
ranges from 50 to 52,000 events per mission. The CRB for the ideal detector is included as a reference
curve (– –).

When MLE is being used in the design phase of an instrument to estimate its expected performance
and if the simulations indicate that MLE does in fact provide unbiased spectra information and approxi-
mate attainment of the CRB for the science mission under study, then equation (14) can be used to evaluate
the relative merits of various instrument design parameters without performing additional simulations.
This has tremendous practical value in design parameter trade studies because equation (14) can be evalu-
ated in mere seconds, while the equivalent information from Monte Carlo simulations can take several
days. For example, because we know (from Fig. 2) that MLE attains the CRB for N > 100 events, equation
(14) can be used to compute the family of curves shown in figure 7 that relate the precision with which a1
can be measured as a function of detector resolution and collecting power. This implies instrument design-
ers should first attempt to maximize collecting power and then improve resolution, and in that order. The
proposed TSC instrument, with its expected 52,000 events, is indicated by the square in figure 7. The reader is
referred to figure 3 for a detailed view of the CRB calculated using equation (14) for the TSC as a function
of detector energy resolution.

0

0.1

0.2

0.3

0.4

10 100 1,000 100,000

Number of Events

St
an

da
rd

 D
ev

ia
tio

n

Standard Deviation (40% Gaussian) CRB (40% Gaussian) CRB (Ideal)

Figure 6.  Standard deviation of the ML estimator aML versus N for a 40-percent resolution
Gaussian detector based on 10,000 simulated missions at each value of N and the
CRB for the 40-percent Gaussian detector computed using equation (14) (        ).
The CRB for the ideal detector is included as a reference curve (       ).
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Figure 7.  CRB as a function of N for detector energy resolutions in the range 0 £ r £ 0.40.
The proposed TSC instrument with its expected 52,000 events is indicated by the
square, and the observing energy range was set to 20–5,500 TeV.

A detailed simulation study of the TSC-sized ideal detector, with its expected N = 52,000 events for
the observing range 20–5,500 TeV and with a1 = 2.8, was conducted and aML obtained from equation (9)
for each of 1 million missions (each mission detected 52,000 events), yielding a mean and standard devia-
tion value of aML to be 2.80003 and 0.007905, respectively. Constructing the probability density function
of aML from equation (13) and then numerically evaluating its mean and standard deviation gives 2.80003
and 0.007911, respectively, while the CRB calculated from equation (8) gives 0.00790998, illustrating the
remarkable agreement between simulation and theory and attainment of P2. Note that aML is essentially
unbiased too and thus P1 is approximately attained. Because 5.2 ¥ 1010 random numbers were required for
this 1 million simulated missions study, it is crucial to use a random number generator having a period
longer than 5.2 ¥ 1010, such as the generator used in this study which has a period of ª1018.

1.2  Broken Power Law Energy Spectrum

The broken power law energy spectrum suggests a transition from spectral index a1 below the knee
location at energy Ek to a steeper spectral index a2 > a1 above the knee.* The broken power law spectrum
predicts that the number of protons detected above an energy, E, is given by

*The case a2 < a1 and where Ek is referred to as the ankle can also be handled by this MLE procedure.
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where E is in units TeV, MA  and EA are 160 and 500 TeV, respectively, as before for the TSC instrument,
NS(>E) is defined in equation (6), and currently available measurements suggest that a1 is ª2.8, a2 is
thought to be somewhere between 3.1 and 3.3, and Ek is parameterized in the range of 100 to 300 TeV for
this study. The broken power law probability density function fB is obtained by normalizing NB over an
observing range [E1, E2] of interest and is defined in equation (21) of appendix A.

The likelihood function of a random sample of N GCR events from the broken power law spectrum
detected by the ideal detector having perfect energy resolution, regarded as a function of the unknown
vector of parameters qqqqq = (a1, a2, Ek), is
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where the first product is over the event energies below the knee location Ek and the second product is over
those event energies above Ek, and they total in number to N, and A(qqqqq) is the normalizing coefficient given
in equation (22).

The Nelder-Mead simplex method can then be used to obtain qqqqqML from equation (18), where the
objective function O(qqqqq) is defined as minus the log-likelihood function, so that
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for N events detected by the ideal detector, while equation (2) must be used to construct the likelihood
function for a real detector having response function, g, and energy resolution, r, with N instrument
responses yi . Consequently, the ML estimate qqqqqML is
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where the range of integration must be split at Ek at each step in the simplex search for qqqqqML = (a1, a2, Ek)ML.
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Table 1.  Number of events used in broken power law simulations for 0.5 break-size study.

Figure 8.  ML estimate of a1 and a2 as a function of detector collecting power.

To numerically explore the properties of qqqqqML for the broken power law distribution, the vector of
spectral parameters is first set to qqqqq = (2.8, 3.3, 100 TeV) and events simulated from the energy range 20 to
5,500 TeV for each of several values of N selected so as to provide an average of 500, 1,000, …, 5,000
events above Ek as shown in table 1. The notation N2 is introduced to denote NB(>Ek), N for NB(>E1) so
that N1=N–N2, and the notation N(N2) means “a total of N events, of which N2 of them are above the
spectral knee Ek.”

For each value of N in table 1, 10,000 missions were simulated and for each of these missions, qqqqqML
was obtained using equation (18) for an ideal detector and equation (19) for the TSC detector having
Gaussian response function g and constant 40-percent energy resolution over the simulated energy range
of 20 to 5,500 TeV.

Figure 8 depicts the mean of the ML estimates of a1 and a2 versus the number of events N used in
the simulations and shows that when the collecting power of the detector provides ≥1,500 events above Ek
(corresponding to third set of markers from left), property P1 is essentially attained by the TSC instrument
since the relative bias is <3 percent for the 40-percent resolution Gaussian detector, and is even better for
the ideal detector having zero energy resolution.

Similarly, figure 9 illustrates the bias (recall Ek=100 TeV in these simuations) of the ML estimate
of Ek as a function of N for the TSC instrument and the ideal detector. Note that property P1 is again
roughly attained by the TSC (relative bias is £2 percent) when there are ≥1,500 events above Ek.
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Next, property P2 is investigated and requires the construction of the 3-by-3 information matrix
I(qqqqq). Equation (32) of appendix A provides I(qqqqq) for the ideal detector, while for a real detector with
response function, g, and energy resolution, r, the ij-element of I(qqqqq) is, by equation (4),

I N g y E E dE g y E E dE

g y E E dE

ij
i

B
E

E

i
B

E

E

B
E

( ) log ( , ) ( ; log ( , ) ( ;

( , ) ( ;

qq qq)) qq))

qq))

= ∂
∂

È

Î

Í
Í

˘

˚

˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Ê

Ë

Á
Á

∂
∂

È

Î

Í
Í

˘

˚

˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

¥

ÚÚ Ú
•

q
r f

q
r f

r f

1

2

1

2

0

11

2E

dyÚ
È

Î

Í
Í

˘

˚

˙
˙

ˆ

¯
˜
˜

(20)

and can be accurately computed using the numerical methods discussed in the simple power law section,
and where the notation in equation (20) defines q1 ∫ a1, q2 ∫ a2, and q3 ∫ Ek, and where the integration
range [E1, E2] must be split at Ek for the inner three integrals.

A comparison of the CRB obtained from equation (20) for a1 using the TSC with its 40-percent
Gaussian response function with the simulation results is shown in figure 10. Note the CRB is attained
when the number of events above the knee location is ≥1,500. The case 11,439 (500) had several simulated
missions in which the MLE procedure gave an estimate qqqqqML of qqqqq that suggests a simple power law would
probably be an adequate explanation of the simulated events. These errant estimates were characterized as
EE1) Ek and a2 are both very large relative to their assumed values of 100 TeV and 3.3 in the simulations,

Figure 9.  ML estimate of Ek as a function of detector collecting power using a 40-percent
resolution Gaussian response function (the TSC) and the ideal detector.
The knee location Ek was set to 100 TeV in these simulations.
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and EE2) Ek and a1 are both very small. While the condition a 1 ª a 2 is normally associated with suggest-
ing a simple power law adequately fits the data, these unlucky missions illustrate the beauty of the MLE
procedure in finding two other conditions whereby a broken power law collapses into a simple power law.
The first condition is a broken power law with Ek above the range of detected events and a2Æ• in an effort
to explain the absence of events above Ek, which is indeed just a simple power law over the range of
detected events and implied by EE1. The second condition is a broken power law with Ek below the range
of detected events and a1Æ0 and implied by EE2. Eliminating these errant estimates of a1 gives the
trimmed standard deviation depicted at N = 11,439 (and N2 = 500) in figure 10 and symbolized by a filled
circle on the plot. The CRB for the ideal detector calculated from equation (42) is also shown in figure 10
with corresponding simulation results. Additionally, the difference between the covariance matrix of the
ML estimates and I–1(qqqqq) was noted to be positive definite as each of its three eigenvalues were positive,
with two of them approximately zero for all values of N in table 1 used in the simulations.

Similar results are illustrated in figure 11 for a2 and figure 12 for Ek. Trimmed estimates for these
two make little difference because of their already larger variance relative to that of a1.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

10,000 30,000 50,000 70,000 90,000 110,000

Total Number of Events N

σ (Ideal) CRB (Ideal)

σ (40% Gaussian) CRB (40% Gaussian)

Trimmed

St
an

da
rd

 D
ev

ia
tio

n

Standard Deviation of ML Estimate of    1 and CRBα

Figure 10.  CRB of a1 using TSC (        ) and ideal detector (        ) obtained from equation (20)
versus collecting power. Standard deviations of ML estimates from simulations for
values of N in table 1 indicated by markers.



15

0

0.05

0.10

0.15

0.20

0.25

10,000 30,000 50,000 70,000 90,000 110,000

St
an

da
rd

 D
ev

ia
tio

n

σ (40% Gaussian) CRB (40% Gaussian)

σ (Ideal) CRB (Ideal) Trimmed

Standard Deviation of ML Estimate of    2 and CRB α

Total Number of Events N

Standard Deviation of ML Estimate of Ek and CRB 

0

5

10

15

20

25

30

35

40

10,000 30,000 50,000 70,000 90,000 110,000

St
an

da
rd

 D
ev

ia
tio

n 
(T

eV
)

σk (40% Gaussian) CRB (40% Gaussian) σk (Ideal) CRB (Ideal)

Total Number of Events N

Figure 11.  CRB of a2 using TSC (        ) and ideal detector (        ) obtained from equation (20)
versus collecting power. Standard deviations of ML estimates from simulations for
values of N in table 1 indicated by markers.

Figure 12.  CRB of Ek using TSC (        ) and ideal detector (        ) obtained from equation (20)
versus collecting power. Standard deviations of ML estimates from simulations for
values of N in table 1 indicated by markers.



16

Figure 13.  Relative frequency histograms of the ML estimate of a1 (leftmost two histograms)
for N = 11,439 (broadest of the two) and N = 114,390 (narrow histogram).
Rightmost two histograms similarly defined for a2.

The property of asymptotic normality (P3) of qqqqqML is next investigated with the aid of relative
frequency histograms of the components of qqqqqML provided from the simulations. Figure 13 shows relative
frequency histograms of the 10,000 ML estimates of a1 and a2 for the two collecting powers that provide
11,439 (500) events and also 114,390 (5,000) events and correspond to the first and last columns of table 1.
As before, the detector here is the TSC with its Gaussian response function and 40-percent energy resolu-
tion and with its collecting power adjusted through the choice of N. Note that while the histograms corre-
sponding to the larger collecting power are approximately normally distributed and well separated, those
corresponding to the smaller detector are skewed and even slightly overlapping, indicating the onset of
difficulties in detecting the broken power law parameters. Relative frequency histograms for the ideal
detector (not shown) show no overlap for the N = 11,439 (500) case and suggest that this is the approximate
boundary for fixed N where detector resolution can play a leveraging role for this set of parameters.

Frequency histograms of the ML estimates of Ek for these two cases of N are shown in figure 14 and
once again, note that the larger sized detector has roughly attained P3 while the smaller sized detector has
not, and in fact a “bump” in the tail of the broader distribution for the smaller detector is seen, suggesting
a simple power law would likely be an adequate explanation of these particular mission results. This
situation was previously discussed and referred to as EE1.
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Figure 14.  Relative frequency histograms of the ML estimates of Ek for N = 11,439
(broadest of the two and with bump in right-hand tail) and N = 114,390.

Figure 15.  Relative frequency histograms of ML estimates of a1 and a2 for N = 22,877 and N2 = 1,000.

Next, figure 15 shows relative frequency histograms of the 10,000 ML estimates of a1 and a2 when
N = 22,877, providing an average of N2 = 1,000 events above Ek, and the two histograms are seen to be
clearly separated. This suggests that a detector with this collecting power and a 40-percent resolution
Gaussian response function could indeed measure the three broken power law spectral parameters when
their true values are qqqqq = (2.8, 3.3, 100 TeV). Because the concept TSC that was studied would detect 51,576
(2,255) events on average in the energy range 20–5,500 TeV when qqqqq = (2.8, 3.3, 100 TeV), it is concluded
that it could measure the three spectral parameters when Ekª100 TeV and the break-size is ª0.5.
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Table 2.  Number of events used in broken power law simulations for 0.3 break-size study.

Figure 16.  ML estimate of a1 and a2 as a function of detector collecting power
when the spectral break-size is 0.3 for the TSC and the ideal detector.

1.3  Break-Size 0.3 Study

For this study the vector of spectral parameters is set to qqqqq =(2.8, 3.1, 100 TeV) and events simulated
from the energy range 20–5,500 TeV for each of several values of N selected so as to provide an average of
1,000, 2,000, …, 5,000 events above Ek as shown in table 2. (Values of N2 <1,000 produced too many
errant ML estimates qqqqqML of q q q q q  to be useful.)

For each value of N in table 2, 5,000 missions were simulated and for each mission, qqqqqML
was obtained using equation (18) for an ideal detector, and equation (19) for the TSC detector having
Gaussian response function and constant 40-percent energy resolution over the simulated energy range
20–5,500 TeV. Figure 16 shows that when the number of detected events above the knee is ≥2,000, the ML
estimate of a1 and a2 is essentially unbiased and property P1 is attained, while figure 17 indicates the ML
estimate of Ek is still somewhat biased, even when N2 = 2,000 (second markers from left) for the
40-percent resolution Gaussian detector, which is perhaps not surprising in light of the more difficult
estimation task for this smaller break-size case.
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Figure 18 shows the CRB of a1 using the TSC detector and also the ideal detector versus the
number of detected events N. The markers represent the standard deviation of the 5,000 ML estimates of a1
based on the simulations. Note that when N2 = 1,000, MLE experienced several missions resulting in errant
estimates of a1 in its attempt to place the knee before the data and then drive a1Æ0 (condition EE2),
suggesting a simple power law might be a suitable fit for those simulated missions. Trimmed estimates are
also provided in figure 18 corresponding to the cases where N2 = 1,000 and N2 = 2,000 and indicated by
filled circles. Also note the ideal detector with its zero-percent resolution attains the CRB for all the values
of N in table 2.

Similar comparisons between the CRB and the ML estimate of a2 and Ek are shown in figures 19
and 20, respectively. Figure 20 indicates the CRB for Ek is particularly difficult to attain, even for the ideal
detector. Trimmed estimates are indicated by filled circles for the first two values of N, corresponding to an
average of 1,000 and 2,000 events above Ek, respectively.

Figure 17.  ML estimate of Ek as a function of detector collecting power using the TSC
and ideal detector when the break-size is 0.3. The actual concept TSC with its
expected N = 51,790 events is indicated by the diamond and is based on 25,000
simulated missions (others are 5,000 missions each) and suggests the marker
to its immediate right is probably a little on the high side.
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Figure 18.  CRB of a1 using TSC (        ) and ideal detector (        )
versus collecting power. Standard deviations of ML estimates
from simulations for values of N in table 2 indicated by markers.

Figure 19.  CRB of a2 using TSC (        ) and ideal detector (        )
versus collecting power. Standard deviations of ML estimates
from simulations for values of N in table 2 indicated by markers.
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Figure 21.  Relative frequency histograms of ML estimates of a1 and a2 for the proposed TSC.

To investigate the properties of qqqqqML for the proposed TSC with its 40-percent resolution Gaussian
response function, 25,000 missions were simulated with qqqqq = (2.8, 3.1, 100 TeV), providing 51,790 (2,470)
events on average from the observing range 20–5,500 TeV. Frequency histograms of the ML estimates of
a1 and a2 are shown in figure 21 for the proposed TSC and a clear separation between the histograms is
observed. A slight right-hand skewness in the ML estimates of a2 is noted.
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Relative Frequency Histogram of ML Estimate of Ek 
θ = (2.8, 3.1, 100 TeV), Observing Range: 20–5,500 TeV, 

Gaussian Response Function With 40% Resolution.
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Figure 22.  Relative frequency histograms of the ML estimates of Ek for the proposed TSC.

Table 3.  Summary statistics based on 25,000 simulated missions with q q q q q = (2.8, 3.1, 100 TeV)
and observing range 20–5,500 TeV, for the TSC having Gaussian response function.

Figure 22 shows the relative frequency histogram of the ML estimates of Ek using the proposed
TSC and the long, right-hand tail suggests the possibility of a few missions that resulted in errant estimates
of the form EE1. Also note the skewness and thus slight departure from normality (property P3).

Table 3 gives summary statistics of qqqqqML for the simulated missions. The rows labeled “theoretical
limits” under the Comments column provide the input parameters qqqqq used in the simulations and the CRB
obtained from equation (20), indicating that qqqqqML is approximately unbiased, efficient, and normally dis-
tributed so that properties P1, P2, and P3 are roughly attained by the proposed TSC for this set of spectral
parameters. Similar information for the zero-resolution ideal detector is also provided in table 3.
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Figure 23.  Objective function given by equation (18) for the ideal detector in the neighborhood
of qqqqqML for a simulated mission, keeping a1 fixed at its ML estimate. There were
114,385 (4,819) events in this mission. The vertical axis has been scaled to 1.

The difficulty of the MLE task is only partly appreciated from the preceding study of the attainment
of (or lack of) the three statistical properties—P1, P2, and P3. Figure 23 illustrates the objective function
in the vicinity of qqqqqML for the ideal detector for a particular simulation mission in which qqqqq = (2.8, 3.3,
100 TeV) and there were 114,385 events from the energy range 20–5,500 TeV of which 4,819 were above
the knee at 100 TeV, with equation (18) yielding qqqqqML = (2.805, 3.319, 95.16 TeV). Figure 23 shows the
objective function in the neighborhood of qqqqqML, keeping a1 fixed at 2.805 and letting a2 and Ek vary in the
region around qqqqqML. Note the surface is well behaved and the minimum is easily found (and hence, qqqqqML),
and is representative of all the surfaces that were viewed when properties P1, P2, and P3 are approximately
attained.
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Figure 24.  Contour plot of the objective function for ideal detector in the neighborhood
of qqqqqML for a simulated mission, keeping a1 fixed at its ML estimate. There
were 114,385 (4,819) events in this mission.

The alignment or tilt of the surface in figure 23 is interesting and the contour plot in figure 24
illustrates the strong correlation between a2 and Ek which is a direct consequence of the mathematical
formulation of fB  in equation (21) where the knee Ek acts as a “hinge” connecting the two distinct parts of
the spectrum, and one can easily visualize a correlation between a1 and Ek as well, whereas a1 and a2
appear to be only slightly correlated (not shown). The information matrix in equation (32) for the ideal
detector can be used to approximate the correlations for this case and gives zero between a1 and a2, 0.41
between a1 and Ek, and 0.64 between a2 and Ek.

2.
8

3.
4

3.
9

40

87

135

182

2

 E
k 
(T

eV
)

Contour Plot of Objective Function Versus α2 and Ek  in a Neighborhood 
of  θML, With α1 Fixed at its ML Estimate

 

α



25

Figure 25.  Objective function for ideal detector in the neighborhood of qqqqqML for a simulated
mission, keeping a1 fixed at its ML estimate. This mission consisted of 4,575 (207)
events. The vertical axis has been scaled to 1.

On the other hand, considering a much smaller ideal detector that detected 4,575 events of which
207 were above the knee on a particular simulated mission, equation (18) yields qqqqqML = (2.856, 3.354,
156.57 TeV) and corresponds to the broader of the two minima shown in figure 25 which reveals a much
more difficult estimation terrain in the neighborhood of qqqqqML and in fact, suggests the possibility of mul-
tiple optimal solutions and confidence intervals for a2 and Ek that would necessarily consist of disjoint
subintervals!
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Figure 26.  CRB used to estimate where the distribution of a2 begins to cross that of a1
when (a) the spectral break-size is 0.5 and (b) the spectral break-size is 0.3.

As observed in figures 13 and 15, when histograms of the ML estimates of a1 and a2 begin to
overlap, it clearly signals the onset of difficulties in estimating the broken power law spectral parameters
using MLE (and even more so for the method of moments since MLE was shown to be far superior in the
simple power law section of this TP). Thus, an important scientific question is, “For what values of Ek will
these distributions likely begin to overlap for a particular detector?”

If the concept TSC with its 40-percent Gaussian response function is considered and with an
observing energy range of 20–5,500 TeV, then equation (20) provides the CRB for each of the three
spectral parameters as a function of Ek. For example, for the case where qqqqq = (2.8, 3.3, Ek) and calculating
the CRB for 75 £ Ek £ 400 TeV using equation (20), a 3s curve describing the approximate width of the
distribution (histogram) of the ML estimate of a2 as a function of Ek can be constructed (3.3 minus three
times the CRB of a2) for values of Ek in the 75–400 TeV range. Sketching this curve versus Ek and noting
where it begins to cross the line a1 = 2.8 suggests the value of Ek where the lower 3s point of the
distribution of the ML estimate of a2 for this concept TSC will likely begin to overlap that of a1
(fig. 26(a)). Also shown in figure 26(a) is the case when the resolution is set to 20-percent and also zero-
percent (ideal detector), along with three additional dashed curves for the situation where the TSC’s
collecting power is halved. Similar curves are provided in figure 26(b) for the case where a2 = 3.1, giving
a spectral break-size of 0.3. Obviously these figures are no substitute for statistical hypothesis testing and
furthermore do not consider the two errant estimation possibilities (EE1 and EE2) that also suggest a
simple power law in favor of a broken power law, but nevertheless still provide important information.
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Table 4.  Effect of lowering E1 on the CRB for the TSC-sized detector with 0-, 20-,
and 40-percent resolution Gaussian response function. The number
of events N2 above Ek is 2,255 for all values of E1.

Note, too, that these figures represent a best-case scenario in that they are constructed using the
CRB calculated from equation (20) which of course is not quite attained in practice, especially for the
larger values of Ek and when the break-size is 0.3 as previously discussed. Thus, the actual overlap point
would occur sooner (that is, for smaller values of Ek) because the variance of the ML estimator (or any
other unbiased estimator of a2) will be larger than the CRB.

Furthermore, figure 26 suggests that the 40-percent TSC is roughly equivalent to an ideal detector
(r=0) of half its size in terms of measuring a 2, while similar studies show this 40-percent TSC to be
roughly equal to a 20-percent resolution detector of half its size in terms of estimating a1 and Ek.

2 Conse-
quently, instrument designers should consider first maximizing collecting power and then improving
energy resolution, whenever possible.

It is important to realize that while raising E2 to higher values in this analysis offers no benefit for
this proposed TSC because of its previously stated collecting power, lowering E1 does significantly benefit
the measurement precision of a1 and, because of their correlation but to a lesser degree, Ek. However,
lowering E1 offers no benefit in the measurement precision of a2 when using the ideal detector and virtu-
ally none when using a real detector. These results are presented in table 4 for the case qqqqq = (2.8, 3.3, 100
TeV) and in which E1 is lowered incrementally from 20 to 1 TeV and once again illustrates the utility of the
CRB determined by equation (20). Results for the case when the break-size is reduced to 0.3 are similar.

CRB–Ideal 
Detector (0%)

1
5

10
15
20

11,468,838
632,364
181,152
86,989
51,576

0.0005
0.0024
0.0050
0.0081
0.0117

0.0486
0.0486
0.0486
0.0486
0.0486

5.98
6.09
6.25
6.42
6.60

0.0007
0.0028
0.0058
0.0095
0.0144

0.0578
0.0579
0.0581
0.0584
0.0586

7.89
8.16
8.56
9.03
9.58

0.0009
0.0034
0.0073
0.0126
0.0199

0.0691
0.0697
0.0704
0.0713
0.0722

9.92
10.49
11.34
12.35
13.56

N 1 2 1 2 1 2

E1

(TeV)

CRB–40% Gaussian
Detector

CRB–20% Gaussian
Detector

Ek (TeV) Ek (TeV)Ek (TeV)α α α α α α

1.4  Analysis of Multiple Independent Data Sets

The ML theory required to estimate spectral parameters from an arbitrary number of data sets
produced by science instruments having different observing ranges, different collecting powers, and differ-
ent energy response functions is developed in this section. Application of this methodology will facilitate
the interpretation of spectral information from existing data sets produced by astrophysics missions having
different instrument characteristics and thereby permit the derivation of superior spectral information based
on the combination of data sets. Furthermore, this procedure is of significant value to future astrophysics
missions consisting of two or more detectors by allowing instrument developers to optimize each detector’s
design parameters through simulation studies in order to design and build complementary detectors that
will maximize the precision with which the science objectives may be obtained.
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This extension of the methodology developed in the previous sections to multiple data sets was
motivated by such an application and is presented as an example in which two detectors, both assumed to
have Gaussian response functions but different energy resolutions and observing ranges, were modeled
separately and then in a collaborative effort to estimate the single parameter of a simple power law energy
spectrum. A succinct comparison of the benefits from using the sets in concert is measured in terms of
variance reduction of the estimator, as well as any biases resulting from poor statistics in one or both of the
individual data sets that may be reduced when considered in combination.

The ML theory necessary for application to multiple astrophysics data sets is derived here for two
independent data sets, A and B, produced by instruments having different (1) observing ranges, (2) collect-
ing powers, (3) energy response functions, and (4) energy resolutions. These two data sets will be used
together to estimate the energy spectra information and thereby benefit from the strengths of each detector,
whereas, singly, they may be inadequate for achieving the science objectives. In practice, the data sets must
be corrected for systematic errors in the energy response of the instruments in order to achieve the ultimate
accuracy of the final spectra information based on the combination of astrophysics data sets. Generaliza-
tion of this approach to more than two independent data sets then follows by induction.

To extend the ML theory to handle data sets A and B simultaneously, we begin with the probability

density function for the data set of instrument responses 
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where qqqqq denotes the vector of spectral parameters of an arbitrary energy spectrum, f(E;qqqqq),  to be estimated;
NA is the number of detected events from observing range, RA, of instrument A having response function,
gA, and energy resolution rA, so that the corresponding objective function is

O LA A( ) log ( )qq qq= - [ ] (23)

and the ML estimate qqqqqA, being that value of qqqqq for which OA(qqqqq) is a minimum, is obtained from equation
(24) using the simplex search algorithm as

qq qq
qq

A A=
{ }
min ( ) .O (24)
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The likelihood function and objective function for data set B are similarly defined and because data
sets A and B are assumed independent, the likelihood function for the two sets considered simultaneously
is the product

L L LAB A B( ) ( ) ( ) ,qq qq qq= (25)

so that upon taking the logarithm of each side gives the objective function as

O O OAB A B( ) ( ) ( )qq qq qq= + (26)

and the vector of ML estimates based on both data sets considered simultaneously is

qq qq qq qq
qq qq

AB AB A B= = +[ ]{ } { }
min ( ) min ( ) ( ) .O O O (27)

This procedure outlined above for two data sets is readily extended to k independent data sets so
that any one of the (2k – 1) possible combinations of the data sets acting together provides the ML estimator
qqqqqS obtained by applying the Nelder-Mead algorithm to equation (28) as

qq qq
qq

S jO
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Ǫ̂{ } Âmin ( ) , (28)

where S can be any of the (2k – 1) nonvoid subsets of the set of integers {1, 2, … , k}.

The statistical properties of the derived ML estimator can then be studied for each simulated
scenario and, in particular, those relating to (1) bias, (2) variance, and (3) normality can be rigorously
investigated using graphical procedures and appropriate statistical techniques.*,12,13

The CRB for the estimator of the vector of spectral parameters, qqqqq ,  using two independent data sets,
A and B, is derived in appendix B and shown to be the diagonal elements of the inverse of the covariance
matrix, I, whose Iij elements are

I N
g x g x

N
g y g y
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i j i j
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q q q q (29)

*Some statistical test procedures depend on the outcome of the normality test for estimators.
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and where (1) the notation < . > denotes “expected value” and in practice can be accurately computed using
Gaussian quadratures; (2) the partial derivatives are also numerically evaluated using equation (15); and
(3) gA(x;qqqqq) is the probability density function for data set A = {xi, i = 1, …, NA}, given by equation (21) and
similarly for data set B = {yi, j = 1, …, NB}. As noted in appendix B, the CRB given by equation (29) is
readily extended to k independent data sets and provides a vital check on the performance of the derived
ML estimation procedure. If the simulations show the ML estimator of the spectral information to be
unbiased and also attains the CRB for a given spectrum-instrument combination, then this ML estimator
will be the best (minimum variance) unbiased estimator possible from combining multiple data sets for
that particular astrophysics mission scenario.

Furthermore, when this ML procedure is used in the design phase of an instrument and if the
simulations show qqqqq ML is unbiased and attains the CRB for the science mission under consideration, then
equation (29) can subsequently be used directly to evaluate the relative merits of various instrument design
parameters (measured in terms of their impact on reducing the statistical error in measuring qqqqq) without
performing additional simulations. An example is given in section 1.6. This is of tremendous practical
benefit because equation (29) can be evaluated in mere seconds while the equivalent information based on
Monte Carlo simulations can take several days to obtain. Extending the ML procedure to multiple data
sets, where in practice each may contain 105 to 106 events for a given science mission, is quite challenging.
Practical studies conducted in Howell1,2 typically required ≥1,000 simulated missions to obtain statisti-
cally meaningful inferences about a single detector design parameter under study. Such a simulation run
would last ≥12 h when the broken power law spectrum was assumed (considerably less for the simple
power law), largely because of the vast number of numerical integrations required in evaluating the
objective functions and the many steps taken by the Nelder-Mead search for qqqqq ML.

1.5   Example of Estimating aaaaa1 of a Simple Power Law Using Two Data Sets

The benefits of having the additional nuclei (Z > 8) from a proposed thin sampling calorimeter
(TSC) for ACCESS at energies above the transition radiation detector (TRD) energy range was recently
investigated14 using this methodology and serves to illustrate the application and utility of the approach.
Specifically, the value of having these calorimeter-provided nuclei in addition to the expected number of
TRD events was investigated, and the approach was to measure the benefit of including these additional
events in the estimation of the single parameter, a1, of an assumed simple power law as compared to not
including them.

In this example the TRD geometry factor is assumed to be 7.58 m2-sr with energy response saturat-
ing at 20 TeV/n and for an observing period of 1,000 d. Furthermore, it was decided to consider the species
Ne-S with an assumed differential spectral index of 2.39, along with a calorimeter geometry factor of
5 m2-sr, providing 593 events >20 TeV/n on average for the calorimeter for a 1,000-d observing period.

Additionally, a Gaussian response function was assumed for both detectors, and the TRD was
assumed to have the same linear mean response as the calorimeter but with a constant 35-percent energy
resolution over its observing range E1 to 20 TeV/n, while the TSC was assumed to have a constant resolu-
tion of 40-percent over its nonoverlapping observing range 20 to 2,000 TeV/n. This upper limit of 2,000
TeV was chosen for the calorimeter because the number of detected events >2,000 TeV is negligible for a
detector of this collecting power. Then, E1 is taken to be different values ranging from 0.5 to 7 TeV as part
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of a parametric study in this illustration. Of course, the upper energy boundary of 20 TeV/n could be
extended to a higher value if the saturation limit of the TRD could be improved.

In the simulation, GCR event energies, Ei, are simulated from the TRD observing range,
RTRD = [E1, 20 TeV], and where the number of these events, NTRD, is a function of the observing range,
geometry factor, and observing time. Then, for each of these simulated incident energies, Ei, a response, xi,
is simulated according to the assumed Gaussian response function and with 35-percent energy resolution,
rTRD.  The calorimeter events are simulated in a similar manner using its defining parameters, NCal, RCal,
and rCal, and the Gaussian response function.

Performing the simulation once defines a so-called astrophysics “mission” and provides a single
ML estimate of a1 for each instrument by solving equation (24) with q q q q q  = a1 and all instrument character-
istics appropriately modeled through the formulation of the detector response function, g, for each detec-
tor, and then solving equation (27) when the two data sets are used in combination in the ML estimation
procedure. Notationally, aCal and aTRD are the ML estimates of a1 when the calorimeter and TRD are
considered as stand-alone instruments, respectively, and aBoth is the ML estimate of a1 when the two
instruments are used in combination. The simulation is repeated for many missions, each time generating
a new set of incident energies from the assumed simple power law spectrum for each instrument and their
respective simulated energy deposits according to the detectors’ response functions, estimating a1 using
each data set separately and then in tandem. The statistical behavior of these estimates relative to plausible
design variation of response function parameters is then studied.

Figure 27a shows the ML estimates aTRD, aCal, and aBoth of a1 for 25 simulated missions in which
E1 was first set to 5 TeV/n, thus providing 5,275 events on average for the TRD. Figure 27b shows the
effect of lowering E1 to 3 TeV/n, providing an average 11,660 events for the TRD, and then lowering E1 to
1 TeV/n, providing an average of 56,920 events for the TRD for 25 missions (fig. 27c). We observe that as
E1 is lowered, thereby increasing the number of TRD events as well as extending its effective observing
range, and hence “lever arm” effect in the estimation of a1, the calorimeter has an ever-diminishing role in
its contribution to aBoth as illustrated by the aTRD and aBoth estimates nearly coinciding in figure 27c.

Figure 27a.  ML estimates of a1 for 25 missions, with E1 = 5 TeV (5,275 events for TRD
and 593 for calorimeter).
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Figure 27b.  ML estimates of a1 for 25 missions, with E1 = 3 TeV (11,660 events for TRD
and 593 for calorimeter).

Figure 27c.  ML estimates of a1 for 25 missions, with E1 = 1 TeV (56,920 events for TRD
and 593 for calorimeter). Note that aTRD and aBoth are virtually indistinguishable.
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The simulation was run for 1,000 missions for each of several values of the E1 parameter with
summary statistics provided in table 5 for the calorimeter acting alone, table 6 for the TRD acting alone,
and table 7 for the two data sets acting in concert to estimate a1. Tables 5 and 6 show that the calorimeter
and TRD as stand-alone instruments each provide unbiased spectral information (recall a1 = 2.39 for this
study) and attainment of the CRB.

Table 5.  Summary statistics of aCal based on 1,000 simulated missions of the calorimeter.

Table 6.  Summary statistics of aTRD based on 1,000 simulated missions for each value
of E1 of the TRD alone (all events between E1 and 20 TeV).

Table 7.  Summary statistics of aBoth based on 1,000 simulated missions for each value
of E1 of the TRD and calorimeter acting in combination.

E1 (TeV)
7.0
5.2
5.0
3.0
1.0
0.5

Saturation
(TeV)

20
20
20
20
20
20

E1 (TeV)
20
20
20
20
20
20

E2 (TeV)
2,000
2,000
2,000
2,000
2,000
2,000

Total Combined
Events

    3,560
    5,539
    5,866
  12,249
  57,511
151,220

Mean
2.39
2.39
2.39
2.39
2.39
2.39

Standard 
Deviation σBoth CRB

TRD   Calorimeter
CRB for TRD and Calorimeter (Includes 593 Events >20 TeV)

a The appearance that σCal is slightly less than the CRB is an artifact of the finite number of missions 
   in the simulations.

0.058a

0.048
0.045a

0.027a

0.011
0.007

0.059
0.048
0.046
0.028
0.011
0.007

E1 (TeV)
Saturation

(TeV)

20
20
20
20
20
20

TRD Events Mean
2.39
2.39
2.39
2.39
2.39
2.39

Standard 
Deviation σTRD

0.124
0.068
0.063
0.031
0.011
0.007

CRB
0.123
0.068
0.063
0.031
0.011
0.007

2,968
4,947
5,274

11,658
56,919

150,630

7.0
5.2
5.0
3.0
1.0
0.5

E1 (TeV)
20

E2 (TeV)
2,000

Calorimeter 
Events N(E > E1)

593
Mean
2.39

Standard 
Deviation σCal

0.066a

CRB
0.067a

aThe appearance that σCal is less than the CRB is an artifact of the finite number of missions 
  in the simulations.
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Table 7 shows that for all scenarios considered, the two data sets acting together likewise provide
an unbiased estimate of the spectral parameter, a1, and attainment of the CRB computed from
equation (29) with q q q q q = a1 to give

CRBBoth

TRD Cal
TRD Cal

=
∂

∂
Ê

ËÁ
ˆ

¯̃
+

∂
∂

Ê

ËÁ
ˆ

¯̃

1

1

1

2
1

1

2

N
g x

N
g ylog [ ( ; )] log [ ( ; )]a

a
a

a

(30)

as the CRB for the TRD and calorimeter acting in combination. The CRB in table 5 for the calorimeter
acting alone is obtained from equation (14) and likewise in table 6 for the TRD acting alone for the various
values of E1. Numerical evaluation of equation (30) for the different scenarios of interest presented in table
7 indicates the two detectors acting in concert do indeed attain the CRB for all values of E1 and achieve-
ment of this bound, coupled with the fact that the derived ML procedure provides an unbiased estimate of
the spectral parameter, a1, implies that this procedure is the best (minimum variance) unbiased estimation
technique possible.

Additionally, histograms of the 1,000-mission ML estimates for each instrument considered
separately and also in tandem show the distribution of the ML estimator to be approximately normally
distributed.

Comparing standard deviations of the different scenarios in tables 5–7 clearly shows the impor-
tance of not only the number of events or so-called “statistics” but also the observing range of the instru-
ments; i.e., the “lever arm effect.” The very special case where E1 = 5.2 TeV, found by trial and error, shows
the calorimeter acting alone with only 593 events but with a much greater observing range (20 TeV/n to an
average maximum event energy of 1,100 TeV/n) is effectively as good as the TRD in terms of estimating
a1 (sCal = 0.067, and sTRD = 0.068 when E1 = 5.2 TeV). For this case where E1 = 5.2 TeV, the TRD had an
average of 4,947 events but with a much shorter observing range. Furthermore, the TRD’s energy resolu-
tion was assumed to be 35 percent, whereas the calorimeter was assumed to be worse with a constant
40-percent energy resolution. We also note the fairly intuitive result in table 7 that sBoth = 0.048 which is
ª0.068/ 2  when the calorimeter and TRD are effectively equal to each other and so sBoth scales roughly
by 2  for this case.

Nevertheless, as E1 is successively lowered, we note the overpowering impact of the TRD’s
increasing number of events and growing observing range, and in fact, for E1 £ 1 TeV, the calorimeter’s
contribution to the variance reduction of the ML estimate of aBoth is virtually nil. Thus, we see that “how
low” the TRD can observe plays a major role in assessing the value of these additional calorimeter events
in the estimation of the spectral parameter, a1. It was concluded that since the proposed TRD would easily
observe to £1 TeV/n, the contribution of the calorimeter’s additional events would be insignificant for
measuring the spectra for Z > 8. Thus, this study resulted in an important design consideration for the
charge particle identification detector for the calorimeter and underscores the utility of this ML theory for
multiple independent data sets in the design phase of new science instruments.
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1.6   Using the CRB to Explore Instrument Design Parameters When Estimating
q q q q q = (aaaaa1, aaaaa2, Ek) of a Broken Power Law Using Three Data Sets

The benefit of using three independent data sets in concert to measure the spectral parameters of an
assumed broken power law proton spectrum will be investigated, and, for specificity, assume the spectral
knee location is Ek = 175 TeV and the slope parameters a1/a2 below/above the knee are 2.8 and 3.2,
respectively, to give a 0.4 spectral break-size.

Next, assume the three hypothetical data sets A, B, and C were collected by instruments having
observing ranges, collecting powers, and stochastic response functions defined in table 8 so that data set A
provides information regarding only the spectral parameter a1; B about a1, a2, and Ek; and C, only about
a2. It is further assumed that each data set was produced by a detector having the same linear mean
response as the TSC previously introduced in section 1.1 so that their response functions may be visually
compared in figure 28.

Table 8.  Data sets and associated response functions, with CRB for all possible
combinations of data sets.

In this scenario, data set A was produced by an instrument having a Gaussian response function and
with constant 40-percent energy resolution; B by an instrument having a gamma response function and
thus capable of describing a wide variety of shapes with right-hand skewness (outer curve from the right in
fig. 28); and C was measured by a detector having a “broken Gaussian” response function consisting of
two blended normal distributions (middle curve from right in fig. 28) suggested by J. Ormes, 2000, private
communication, for its closeness to the Gaussian response function but with a tail region as desired. These
latter two response functions were introduced to address the possibility that some detector response func-
tions may exhibit a right-hand skewness and might add to the difficulty of the ML estimation task. Note
that while the gamma response function used here also has a constant energy resolution of 40 percent, the
broken Gaussian actually has a 41-percent resolution because of the added skewness while keeping the rest
of the distribution matching the Gaussian.

Furthermore, in the construction of these hypothetical data sets, the number of events in each data
set was chosen so that each data set alone provides unbiased spectra information and approximate
attainment of the CRB,1,2 as discussed in sections 1.1 and 1.2, so that any combination of the data sets

Data Set Combinations and 
Instrument Response Function

A (Gaussian)
B (Gamma)

C (Broken Gaussian)
AB
BC

ABC

Observing 
Range (TeV)

[1, 20]
[35, 5,000]

[500, 10,000]

Average
Number 
of Events
150,000

44,000 (2,000)*
500

α1

0.0095
0.0225

–
0.0087
0.0220
0.0087

*44,000 events above 35 TeV of which 2,000 are above Ek=175 TeV.

α2

–
0.0780
0.1050
0.0744
0.0626
0.0607

Ek (TeV)
–

34.24
–

26.13
30.23
23.05

Cramer-Rao Bound for
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should also attain the CRB. Consequently, the CRB can be calculated from equation (56) for the
combination of data sets and used directly to investigate the relative merits of instrument design param-
eters without performing the simulations. Note that while A and C provide no information about the knee
location Ek, they do provide an improvement in the measurement precision of Ek when they work together
with data set B.

To illustrate the utility of the CRB for multiple independent data sets regarding design parameter
studies, suppose the collecting power of instrument C is increased by a factor of 10 with the results given
in table 9 which shows the merits of collecting power on the measurement precision of the spectral param-
eters for the combinations of data sets C, BC, and ABC. While C only contains information about a2, the
measurement precision (standard deviation) of Ek reduces from 30.23 to 23.6 TeV for the BC combination
and from 23.05 to 17.47 TeV for the ABC combination.

Figure 28.  Gamma, Gaussian, and broken Gaussian detector response functions to 40-TeV proton.

Table 9.  Number of events from table 8 in data set C is increased by a factor of 10.

Broken Gaussian Gaussian Gamma
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Instrument Combination
A (Gaussian)
B (Gamma)

C (Broken Gaussian)
AB
BC

ABC

Observing 
Range (TeV)

[1, 20]
[35, 5,000]

[500, 10,000]

Average
Number 
of Events
150,000

44,000 (2,000)*
5,000

α1

0.0095
0.0225

–
0.0087
0.0214
0.0086

*44,000 events above 35 TeV of which 2,000 are above Ek=175 TeV.

α2

–
0.0780
0.0332
0.0744
0.0306
0.0303

Ek  (TeV)
–

34.24
–

26.13
23.60
17.47

Cramer-Rao Bound for
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Next, if the number of events in data set B is reduced by a factor of 2 and those in C increased by a
factor of 10, we can once again explore the impact of various collecting power options shown in table 10.
Finally, if we keep the collecting powers the same (B reduced by a factor of 2, C increased by a factor of
10), and additionally improve the resolution of the instruments for A and C to 30- and 35-percent
resolution, respectively, we see the impact of detector energy resolution on measurement precision of the
spectral parameters, as shown in table 11.

Table 10.  Number of events from table 8 in data set B is reduced by a factor
of 2 and those in C increased by a factor of 10.

Table 11.  Number of events from table 8 in data set B is reduced by a factor
of 2 and those in C increased by a factor of 10, resolution of A
improved to 30 percent and C to 35 percent.

Obviously, the number of possible parametric studies are numerous, but the preceding sample
investigation illustrates the utility of this procedure and the derived CRB for multiple independent data sets
when considering the design of new, complementary detectors. Furthermore, the CRB values in tables 8–
11 were computed using equation (56) in <1 min, whereas the equivalent information based on Monte
Carlo simulations would take >1 wk to obtain. However, when the CRB is not attained in practice, simula-
tions must be used to estimate the real performance benefits when using multiple independent data sets.

Instrument Combination
A (Gaussian)
B (Gamma)

C (Broken Gaussian)
AB
BC

ABC

Observing 
Range (TeV)

[1, 20]
[35, 5,000]

[500, 10,000]

Average
Number 
of Events
150,000

22,000 (1,000)*
5,000

α1

0.0095
0.0318

–
0.0091
0.0302
0.0090

*22,000 events above 35 TeV of which 2,000 are above Ek=175 TeV.

α2

–
0.1104
0.0332
0.1048
0.0318
0.0317

Ek  (TeV)
–

48.42
–

35.86
31.81
22.36

Cramer-Rao Bound for

Instrument Combination
A (Gaussian, 30%)
B (Gamma, 40%)

C (Broken Gaussian, 35%)
AB
BC

ABC

Observing 
Range (TeV)

[1, 20]  
[35, 5,000]

[500, 10,000]

Average
Number 
of Events
150,000

22,000 (1,000)*
5,000

α1

0.0083
0.0318

–
0.0080
0.0301
0.0080

*22,000 events above 35 TeV of which 2,000 are above Ek=175 TeV.

α2

–
0.1104
0.0321
0.1047
0.0309
0.0307

Ek  (TeV)
–

48.42
–

35.58
31.70
22.02

Cramer-Rao Bound for
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2.  CONCLUSIONS

This TP investigates the statistical properties of the ML estimator of the single parameter of a
simple power law energy spectrum and presents the conditions under which this estimator attains the three
desirable properties: (P1) consistency, (P2) efficiency, and (P3) asymptotic normality. A comparison with
the estimation procedure called the method of moments is also included and shows the ML estimator to be
far superior in terms of these three desirable properties.

The properties of the ML estimator of the broken power law energy spectral parameters and the
conditions under which P1, P2, and P3 are attained are also investigated under a wide range of parametric
values. A crucial result of this research and necessity for investigating P2 is the derivation of a closed-form
expression for the CRB of the broken power law distribution presented in appendix A. Another critical
result is the calculation of the CRB using equation (20) for the broken power law distribution and equation
(14) for the simple power law distribution when events are measured by a real detector having response
function, g, and energy resolution, r. While this study considered an instrument having a Gaussian
response function and with resolutions ranging from zero to 50 percent, any response function, g, can be
used in equations (14) and (20) to calculate the CRB, such as various skewed distributions and others
having nonconstant energy resolution as illustrated in section 1.6 and also discussed in references 1 and 2.
Much insight into the estimation task of power law spectra information can be gleaned from the CRB as
illustrated in this TP, as well as the fact that it provides a stopping rule in the search for the best (minimum
variance) unbiased estimator of power law spectra information.

Simulations were conducted in parallel with these analytical results and the CRB played an unex-
pected but valuable oversight role by signaling errors in the simulation code when the simulations occa-
sionally produced the impossible result of the ML estimator having a standard deviation smaller than the
CRB. Furthermore, it is likely that these simulation errors, while small in practical terms, would have gone
unnoticed if not for having the CRB available for comparison.

Additionally, several detector design parameter studies are included in this research and it is hoped
that those designing instruments to measure power law spectra information will benefit from these studies.
Additionally, this analysis should benefit those wishing to apply these techniques to the estimation of
spectra information from existing data sets, which requires a modified likelihood function to handle the
realistic situation in which the range of integration [E1, E2] in the objective function is unknown, and is
discussed in detail with examples in references 1 and 2.

The MLE procedure and companion analytical techniques to estimate spectra information from an
arbitrary number of astrophysics data sets produced by vastly different science instruments is presented
and demonstrates how complementary astrophysics missions can work in concert to achieve science goals.
Additionally, the CRB for an unbiased estimator of spectra information based on these multiple indepen-
dent data sets is derived in appendix B and provides a means of assessing the accuracy of different estima-
tion techniques and, furthermore, provides a stopping rule in the search for estimation methodologies
when the CRB is attained in practice. Several examples illustrating this ML method and utility of the CRB
for multiple independent data sets are included.
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APPENDIX A—CLOSED-FORM EXPRESSION FOR THE CRAMER-RAO BOUND
OF THE BROKEN POWER LAW

A closed-form expression for the information matrix I(qqqqq) of the broken power law distribution is
derived, and the inverse I–1(qqqqq) is defined as the CRB. This bound corresponds to the so-called ideal
cosmic-ray detector having perfect energy resolution and has tremendous utility because it sets the limit on
the precision with which any conceivable detector of equal collecting power can measure the three broken
power law spectral parameters. Furthermore, it provides a means to tune the integration and differentiation
parameters in the numerical algorithm for evaluating equation (20) for real detectors because the CRB
determined from equation (42) is exact and must equal equation (20) when the detector’s energy resolution
rÆ0.

A.1  Derivation

The broken power law probability density function for GCR event energy, E, is given by
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over an energy range [E1, E2] that does not depend on the spectral parameters qqqqq = (a1, a2, Ek), and the
normalizing coefficient A(qqqqq) is
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and writing log[fB(E; qq)] as

log[ ( ; )] log[ ( )] log log ,f a d a dB
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where d1 and d2 are indicator functions defined in equation (37), gives
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Taking the derivative of equation (35) with respect to a1 and a2 is straightforward and gives
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where < . > denotes mathematical expectation and the abbreviations
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are introduced. Taking the derivative of equation (35) with respect to Ek and using Leibnitz’s rule (see
Professor Bierens’ “check” of equation (39) in section A.2):
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and the continuity of fB  at Ek gives
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and the three partial derivatives of log[A(qqqqq)] defined in equations (37) and (39) are
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As a check, the expectation of the partial derivatives of fB with respect to the parameters a1, a2,
and Ek defined in equations (36) and (39) are indeed seen to be zero when the derivatives A A Ak1 2

' ' ', , and  in
equation (40) are used in conjunction with the expected value terms defined in equation (41), along with
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Next, the nine elements of the symmetric information matrix I(qqqqq) are constructed as follows:
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where expectation terms in equation (42) not previously evaluated are d d1 2 0= and
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Finally, the matrix elements defined in equation (42) are multiplied by N to give the information
matrix I(qqqqq). It is interesting to note that I(qqqqq) contains the intuitive terms N<d1> and N<d2>, which are the
expected number of events below and above the spectrical knee Ek, respectively.

This completes the derivation of the closed-form expression of the information matrix I(qqqqq) corre-
sponding to the so-called ideal detector having perfect energy resolution. Its inverse I–1(qqqqq) gives the CRB,
and the square root of the diagonal elements of I–1(qqqqq) is the CRB for the three spectral parameters. In
practice, one should verify that the difference of the covariance matrix C and the CRB is positive definite
by checking that the eigenvalues of the matrix [C– I–1(qqqqq)] are all positive. If the eigenvalues are zero, the
CRB has been reached and the ML estimator has attained property P2 (efficiency) by achieving the CRB.

The computer program MATHEMATICA15 was used to provide equations (40)–(43) and performed
the important check

0

0

0

1 1

2 2

1
1

2
2

= -

= -

= + +

Ï

Ì

Ô
Ô
Ô

Ó

Ô
Ô
Ô

A L

A L

A
E E

E

E

k
k k

'

'

'

d

d

a d a d

(44)

that confirms the correctness of the terms leading to the construction of the information matrix I(qqqqq). Fur-
thermore, a format feature of MATHEMATICA called FortranForm was used to write these equations in
FORTRAN source code for implementation in the overall simulation program and thereby eliminated the
possibility of introducing human error in transferring the equations into the computer program.

A.2  Check on Equation (39) by Professor Bierens16

“Equation (39) is correct if (38) is correct, which in its turn is the case if (38) holds for fixed p and
q. In the latter case (38) states that the derivative operator d/da can be moved inside the integral, which
requires the application of the dominated convergence theorem. The conditions for the latter are:

1.  For each x in [p,q],  f(x,a) is differentiable in a, possibly except for x in a subset with Lebesgue
measure zero.

2.  There exists a function b(x,a), say, with finite integral over [p,q] such that sup{n|f(x,a+1/n) – f(x,a)|
< b(x,a) and sup{n|f(x,a–1/n) – f(x,a)| < b(x,a), where the “sup” is taken over all n>0.

In (39) you have applied (38) for the cases q = a and p fixed, and q fixed and p = a, so that (39) is
correct if the conditions 1 and 2 hold for a = q and a = p. In the case q = a and p fixed, the log-density f(x,q)
is differentiable in q for x < q, but not for x = q. Similarly, in the case q fixed and p = a, f(x,p) is differen-
tiable in p for x > p but not for x = p. Thus condition 1 holds, with {p,q} the subset with Lebesgue measure
zero. Moreover, since the left and right partial derivatives of f(x,a) to “a” are bounded, condition 2 holds as
well. Consequently, (39) is correct.”
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APPENDIX B—CRAMER-RAO BOUND FOR MULTIPLE INDEPENDENT DATA SETS

Derivation of the CRB using two independent data sets, A and B, considered simultaneously to
estimate a single spectral parameter, q,  follow along the lines of the proof of the CR inequality in Hogg and
Craig17 for a single data set. Starting with the probability density function for detector A’s response (e.g.,
energy deposit) data set 

  A A= ={ }x i Ni 1, ,L  as

  

g x g x E E dE i Ni i
R

A A A

A

A( ; ) ( | , ) ( ; ) , , ,q q= =Ú r f 1 L (45)

and similarly for data set 
  
B B= ={ }y j Nj 1, ,L  as
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and because
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R

A

A

A( ; ) , ,q L (47)

and also for data set B, their product gives the joint probability density function of the two data sets
considered simultaneously. Assuming the derivative operator d/dq can be moved inside the integral,
differentiating their product with respect to q gives
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Next, define the random variable, Z, as
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*The expectation of the cross-product terms is zero because of independence.
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It follows from equation (48) that the mean of Z is zero, or using expected value notation, <Z> = 0.
Moreover, Z is the sum of (NA + NB) mutually stochastically independent random variables, each with
mean zero and consequently with variance*
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Next, assume there exists an unbiased statistic, U, of the parameter q that is a function of the (NA + NB)
instrument responses comprising data sets A and B considered acting together, so that
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and differentiating both sides with respect to q  gives
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This shows that <U Z> = 1, and, because <U Z> = <U><Z> + t sU sZ, where t is the correlation coefficient
of U and Z, we have
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which establishes the CRB for two independent data sets, A and B, for an unbiased estimator of the single
spectral parameter of an energy spectrum. This bound readily extends to k independent data sets by induc-
tion and furthermore confirms that “it always pays to use additional data sets” because of the additional
variance reduction and hence improvements in measurement precision, as long as the additional data sets
provide unbiased information.

The above derivation generalizes to the case where qqqqq is a vector of spectral parameters by the
additivity of information matrices18 so that the CRB for the individual parameters comprising qqqqq are the
diagonal elements of the inverse of the information matrix, I, having ij-elements:
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and, as in the single parameter case, equation (55) is readily extended to k independent data sets.
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For the interesting case where a detector does not observe events in an energy range represented by
one or more of the spectral parameters, the partial derivatives with respect to those parameters are zero. For
example, suppose detector A observes only events below the spectral knee, detector C only observes events
above the knee, and detector B observes both above and below the knee. Then the matrix to be inverted to
obtain the CRB for an unbiased estimator of qqqqq = (a1, a2, Ek) is

I N

g x

ij =

∂
∂

Ê
ËÁ

ˆ
¯̃

È

Î

Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙

A

Alog [ ( ; )]a
a

1

1

2

0 0

0 0 0

0 0 0

+
∂

∂
∂

∂
N

g y g y

i j
B

B Blog [ ( ; )] log [ ( ; )]qq qq
q q

+
∂

∂
Ê

ËÁ
ˆ

¯̃

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

N
g x

C
C

0 0 0

0 0

0 0 0

2

2

2
log [ ( ; )]a

a
  , (56)

where the notation in the second term of the right-hand side of equation (56) defines q1 ∫  a1, q2 ∫ a2, and
q3 ∫ Ek as before and where the integration range for this term must be split at Ek in its numerical evaluation.
An example using equation (56) is provided in section 1.6 of this TP.
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